IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2023-d768261.html
   My bibliography  Save this article

Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment

Author

Listed:
  • Mohammadreza Beydaghdari

    (Department of Chemical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran)

  • Fahimeh Hooriabad Saboor

    (Department of Chemical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran)

  • Aziz Babapoor

    (Department of Chemical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran)

  • Vikram V. Karve

    (Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland)

  • Mehrdad Asgari

    (Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
    Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK)

Abstract

The adsorptive removal of dyes from industrial wastewater using commercially available adsorbents is not significantly efficient. Metal–organic frameworks (MOFs) offer outstanding properties which can boost the separation performance over current commercial adsorbents and hence, these materials represent a milestone in improving treatment methods for dye removal from water. Accordingly, in this paper, the recent studies in the modification of MOF structures in dye removal from the aquatic environment have been discussed. This study aims to elaborate on the synthetic strategies applied to improve the adsorption efficiency and to discuss the major adsorption mechanisms as well as the most influential parameters in the adsorptive removal of dyes using MOFs. More particularly, the advanced separation performance of MOF-based adsorbents will be comprehensively explained. The introduction of various functional groups and nanomaterials, such as amine functional groups, magnetic nanoparticles, and carbon-based materials such as graphene oxide and CNT, onto the MOFs can alter the removal efficiency of MOF-based adsorbents through enhancing the water stability, dispersion in water, interactions between the MOF structure and the contaminant, and the adsorption capacity. Finally, we summarize the challenges experienced by MOF-based materials for dye removal from water and propose future research outlooks to be considered.

Suggested Citation

  • Mohammadreza Beydaghdari & Fahimeh Hooriabad Saboor & Aziz Babapoor & Vikram V. Karve & Mehrdad Asgari, 2022. "Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment," Energies, MDPI, vol. 15(6), pages 1-34, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2023-:d:768261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omar M. Yaghi & Michael O'Keeffe & Nathan W. Ockwig & Hee K. Chae & Mohamed Eddaoudi & Jaheon Kim, 2003. "Reticular synthesis and the design of new materials," Nature, Nature, vol. 423(6941), pages 705-714, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tushar Kanti Sen, 2023. "Application of Synthesized Biomass Bamboo Charcoal–Iron Oxide “BC/Fe” Nanocomposite Adsorbents in the Removal of Cationic Methylene Blue Dye Contaminants from Wastewater by Adsorption," Sustainability, MDPI, vol. 15(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Lirong & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2022. "Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.
    3. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    4. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    5. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    6. Gordeeva, Larisa G. & Solovyeva, Marina V. & Sapienza, Alessio & Aristov, Yuri I., 2020. "Potable water extraction from the atmosphere: Potential of MOFs," Renewable Energy, Elsevier, vol. 148(C), pages 72-80.
    7. Pooja Sindhu & K. S. Ananthram & Anil Jain & Kartick Tarafder & Nirmalya Ballav, 2023. "Insulator-to-metal-like transition in thin films of a biological metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Hong-Jing Zhu & Duan-Hui Si & Hui Guo & Ziao Chen & Rong Cao & Yuan-Biao Huang, 2024. "Oxygen-tolerant CO2 electroreduction over covalent organic frameworks via photoswitching control oxygen passivation strategy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Louis Frentzel-Beyme & Pascal Kolodzeiski & Jan-Benedikt Weiß & Andreas Schneemann & Sebastian Henke, 2022. "Quantification of gas-accessible microporosity in metal-organic framework glasses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    11. Ryunosuke Hayashi & Shohei Tashiro & Masahiro Asakura & Shinya Mitsui & Mitsuhiko Shionoya, 2023. "Effector-dependent structural transformation of a crystalline framework with allosteric effects on molecular recognition ability," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Wenhe Xie & Yuan Ren & Fengluan Jiang & Xin-Yu Huang & Bingjie Yu & Jianhong Liu & Jichun Li & Keyu Chen & Yidong Zou & Bingwen Hu & Yonghui Deng, 2023. "Solvent-pair surfactants enabled assembly of clusters and copolymers towards programmed mesoporous metal oxides," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Chong-Chen Wang & Yuh-Shan Ho, 2016. "Research trend of metal–organic frameworks: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 481-513, October.
    14. Jyoti Shanker Pandey & Nicolas von Solms, 2022. "Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora’s Box of Unanswered Questions and Revelations," Energies, MDPI, vol. 16(1), pages 1-30, December.
    15. Onur Yildirim & Matteo Bonomo & Nadia Barbero & Cesare Atzori & Bartolomeo Civalleri & Francesca Bonino & Guido Viscardi & Claudia Barolo, 2020. "Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies," Energies, MDPI, vol. 13(21), pages 1-48, October.
    16. Chengjun Kang & Kuiwei Yang & Zhaoqiang Zhang & Adam K. Usadi & David C. Calabro & Lisa Saunders Baugh & Yuxiang Wang & Jianwen Jiang & Xiaodong Zou & Zhehao Huang & Dan Zhao, 2022. "Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Sirong Li & Zijun Zhou & Zuoxiu Tie & Bing Wang & Meng Ye & Lei Du & Ran Cui & Wei Liu & Cuihong Wan & Quanyi Liu & Sheng Zhao & Quan Wang & Yihong Zhang & Shuo Zhang & Huigang Zhang & Yan Du & Hui We, 2022. "Data-informed discovery of hydrolytic nanozymes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Gordeeva, Larisa G. & Solovyeva, Marina V. & Aristov, Yuri I., 2016. "NH2-MIL-125 as a promising material for adsorptive heat transformation and storage," Energy, Elsevier, vol. 100(C), pages 18-24.
    19. J. Perego & Charl X. Bezuidenhout & I. Villa & F. Cova & R. Crapanzano & I. Frank & F. Pagano & N. Kratochwill & E. Auffray & S. Bracco & A. Vedda & C. Dujardin & P. E. Sozzani & F. Meinardi & A. Como, 2022. "Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Zhi-Zhou Ma & Qiao-Hong Li & Zirui Wang & Zhi-Gang Gu & Jian Zhang, 2022. "Electrically regulating nonlinear optical limiting of metal-organic framework film," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2023-:d:768261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.