IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8841-d1159924.html
   My bibliography  Save this article

Application of Synthesized Biomass Bamboo Charcoal–Iron Oxide “BC/Fe” Nanocomposite Adsorbents in the Removal of Cationic Methylene Blue Dye Contaminants from Wastewater by Adsorption

Author

Listed:
  • Tushar Kanti Sen

    (Department of Chemical Engineering, College of Engineering, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia)

Abstract

In this work, synthesized, raw-bamboo-biomass-based magnetic “BC/Fe” bamboo charcoal–iron oxide nanocomposite adsorbents were characterized and tested for their effects on the removal of aqueous-phase cationic methylene blue (MB) dye pollutants from synthetic wastewater through a laboratory batch adsorption study. This batch adsorption study aimed to identify various physico-chemical process parameters such as initial dye concentration, solution pH, adsorbent dose, temperature, and their effects on the adsorption kinetics and adsorption isotherm characteristics. From the kinetic studies, it was found that the amount of MB dye adsorption by synthesized adsorbents q e (mg/g) increased from 9.50 mg/g to 15.30 mg/g with the increase in the initial dye concentration range of 10 to 30 ppm, as per contact time, but decreased with the increase in the temperature range from 30 to 60 °C and the adsorbent doses from 20 to 40 mg, respectively, under specified experimental process conditions. From the kinetic study, it was also found that equilibrium was reached within 120 min, the adsorption kinetics followed three mechanistic steps, and the pseudo-second-order (PSO) kinetic model was applicable to explain the data of the batch adsorption kinetics. The various kinetic model parameters were determined from a fitted model equation. Furthermore, there was an increase in the amount of the MB dye adsorption q e (mg/g) from 9.87 mg/g to 17.62 mg/g with the increase in the solution pH from 3 to 7, and a reduction in the amount of dye adsorption q e (mg/g) was found at the solution pH of 10 for a 20 ppm MB dye solution at 30 °C. Both the Freundlich and Langmuir isotherm models were applicable to the equilibrium data, and the maximum adsorption capacity from the Langmuir isotherm fitting was 111.11 mg/g, which was comparative to or even better than many other magnetic adsorbents for methylene blue dye adsorption. Finally, the regeneration and reusability of the magnetic “BC/Fe” bamboo charcoal–iron oxide nanocomposite materials as well as the limitations of these batch adsorption studies are also discussed here.

Suggested Citation

  • Tushar Kanti Sen, 2023. "Application of Synthesized Biomass Bamboo Charcoal–Iron Oxide “BC/Fe” Nanocomposite Adsorbents in the Removal of Cationic Methylene Blue Dye Contaminants from Wastewater by Adsorption," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8841-:d:1159924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadreza Beydaghdari & Fahimeh Hooriabad Saboor & Aziz Babapoor & Vikram V. Karve & Mehrdad Asgari, 2022. "Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment," Energies, MDPI, vol. 15(6), pages 1-34, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui-lian Xu & Ruitao Cai & Mengmeng Kong & Tao Ye & Jinsong Gu & Xiaoyong Liu, 2023. "Water Purification Using Active Charcoal with Microbes and Chelated Iron Soaked into Its Micropores," Sustainability, MDPI, vol. 15(24), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8841-:d:1159924. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.