IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1558-d753971.html
   My bibliography  Save this article

Impacts of Separator Thickness on Temperature Distribution and Power Generation Characteristics of a Single PEMFC Operated at Higher Temperature of 363 and 373 K

Author

Listed:
  • Akira Nishimura

    (Division of Mechanical Engineering, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan)

  • Yuya Kojima

    (Division of Mechanical Engineering, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan)

  • Syogo Ito

    (Division of Mechanical Engineering, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan)

  • Eric Hu

    (School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia)

Abstract

The aim of this study is to investigate the effects of the separator thickness on not only the heat and mass transfer characteristics, but also the power generation characteristics of a polymer electrolyte membrane fuel cell (PEMFC) with a thin polymer electrolyte membrane (PEM) and thin gas diffusion layer (GDL) operated at higher temperatures of 363 and 373 K. The in-plane temperature distributions on the back of the separator at the anode and cathode, which are the opposite sides to the GDL, are measured using a thermograph at various initial cell temperatures ( T init ), relative humidity (RH) levels, and supply gas flow rates. The total voltage corresponding to the load current is measured in order to evaluate the performance of the PEMFC. As a result, it is revealed that the effect of the RH on the power generation characteristics is more significant when the separator thickness decreases. It is revealed that the power generation performance obtained at high current densities decreases with the increase in T init with thinner separator thicknesses. According to the investigation of the in-plane temperature distribution, it is clarified that the temperature decreases at corner positions in the separator with the separator thickness of 2.0 mm, while the temperature gradually increases along with the gas flow with separator thicknesses of 1.5 mm and 1.0 mm.

Suggested Citation

  • Akira Nishimura & Yuya Kojima & Syogo Ito & Eric Hu, 2022. "Impacts of Separator Thickness on Temperature Distribution and Power Generation Characteristics of a Single PEMFC Operated at Higher Temperature of 363 and 373 K," Energies, MDPI, vol. 15(4), pages 1-33, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1558-:d:753971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiao, Kui & Park, Jaewan & Li, Xianguo, 2010. "Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell," Applied Energy, Elsevier, vol. 87(9), pages 2770-2777, September.
    2. Saadat, Nazmus & Dhakal, Hom N. & Tjong, Jimi & Jaffer, Shaffiq & Yang, Weimin & Sain, Mohini, 2021. "Recent advances and future perspectives of carbon materials for fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Akira Nishimura & Tatsuya Okado & Yuya Kojima & Masafumi Hirota & Eric Hu, 2020. "Impact of MPL on Temperature Distribution in Single Polymer Electrolyte Fuel Cell with Various Thicknesses of Polymer Electrolyte Membrane," Energies, MDPI, vol. 13(10), pages 1-17, May.
    4. Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akira Nishimura & Nozomu Kono & Kyohei Toyoda & Daiki Mishima & Mohan Lal Kolhe, 2022. "Impact of Separator Thickness on Temperature Distribution in Single Cell of Polymer Electrolyte Fuel Cell Operated at Higher Temperature of 90 °C and 100 °C," Energies, MDPI, vol. 15(12), pages 1-25, June.
    2. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    3. Akira Nishimura & Kyohei Toyoda & Daiki Mishima & Syogo Ito & Eric Hu, 2022. "Numerical Analysis on Impact of Thickness of PEM and GDL with and without MPL on Coupling Phenomena in PEFC Operated at Higher Temperature Such as 363 K and 373 K," Energies, MDPI, vol. 15(16), pages 1-31, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akira Nishimura & Daiki Mishima & Kyohei Toyoda & Syogo Ito & Mohan Lal Kolhe, 2023. "Numerical Simulation on Effect of Separator Thickness on Coupling Phenomena in Single Cell of PEFC under Higher Temperature Operation Condition at 363 K and 373 K," Energies, MDPI, vol. 16(2), pages 1-28, January.
    2. Akira Nishimura & Kyohei Toyoda & Daiki Mishima & Syogo Ito & Eric Hu, 2022. "Numerical Analysis on Impact of Thickness of PEM and GDL with and without MPL on Coupling Phenomena in PEFC Operated at Higher Temperature Such as 363 K and 373 K," Energies, MDPI, vol. 15(16), pages 1-31, August.
    3. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    4. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    5. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    6. Guo, Hang & Liu, Xuan & Zhao, Jian Fu & Ye, Fang & Ma, Chong Fang, 2014. "Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition," Applied Energy, Elsevier, vol. 136(C), pages 509-518.
    7. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    8. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    9. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    10. Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).
    11. Jung, Guo-Bin & Tzeng, Wei-Jen & Jao, Ting-Chu & Liu, Yu-Hsu & Yeh, Chia-Chen, 2013. "Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 101(C), pages 457-464.
    12. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Adam Polak, 2020. "Simulation of Fuzzy Control of Oxygen Flow in PEM Fuel Cells," Energies, MDPI, vol. 13(9), pages 1-26, May.
    14. Akira Nishimura & Kyohei Toyoda & Yuya Kojima & Syogo Ito & Eric Hu, 2021. "Numerical Simulation on Impacts of Thickness of Nafion Series Membranes and Relative Humidity on PEMFC Operated at 363 K and 373 K," Energies, MDPI, vol. 14(24), pages 1-24, December.
    15. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    16. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    17. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.
    18. Chen, Xi & Wang, Chunxi & Xu, Jianghai & Long, Shichun & Chai, Fasen & Li, Wenbin & Song, Xingxing & Wang, Xuepeng & Wan, Zhongmin, 2023. "Membrane humidity control of proton exchange membrane fuel cell system using fractional-order PID strategy," Applied Energy, Elsevier, vol. 343(C).
    19. Li, Linjun & Wang, Shixue & Yue, Like & Wang, Guozhuo, 2019. "Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode," Applied Energy, Elsevier, vol. 254(C).
    20. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1558-:d:753971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.