IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p818-d731593.html
   My bibliography  Save this article

Analysis of Fluid Flow and Heat Transfer inside a Batch Reactor for Hydrothermal Carbonization Process of a Biomass

Author

Listed:
  • Hamza Chater

    (ERTE, ENSAM, Mohammed V University in Rabat, B.P. 6207, Avenue des FAR, Rabat 10100, Morocco)

  • Mohamed Asbik

    (ERTE, ENSAM, Mohammed V University in Rabat, B.P. 6207, Avenue des FAR, Rabat 10100, Morocco)

  • Abdelghani Koukouch

    (Green Energy Park (IRESEN, UM6P), km 2, Route Régionale R206, Benguerir 43150, Morocco)

  • Ammar Mouaky

    (Green Energy Park (IRESEN, UM6P), km 2, Route Régionale R206, Benguerir 43150, Morocco)

  • Stéphane Bostyn

    (ICARE, CNRS–1C Avenue de la Recherche Scientifique, CEDEX 2, 45071 Orléans, France)

  • Brahim Sarh

    (ICARE, CNRS–1C Avenue de la Recherche Scientifique, CEDEX 2, 45071 Orléans, France)

  • Fouzi Tabet

    (Opti’Tech, Schletterstrasse 12, 04107 Leipzig, Germany)

Abstract

This work analyzes the heat transfer and fluid flow within a batch reactor for hydrothermal carbonization (HTC) of raw olive pomace (ROP). The autoclave is partially filled with a mixture of ROP and distilled water and hence it is considered as a dispersed medium. The reactor is heated through its lateral surface, whereas the bottom wall and the upper surface of the mixture are thermally insulated. Under the effect of heat and pressure, the fluid moves inside the reactor, while particles are subject to other forces. Additionally, the biomass (ROP) is decomposed into very fine particles to produce a solid product (hydrochar). COMSOL Multiphysics software is used for the analysis of heat transfer and fluid dynamics. Chemical kinetics of the reactions are modeled by a basic kinetics model. Numerical results are validated using experimental data carried out in similar operating conditions. They are in good agreement since the deviation between them does not exceed 6%. Isotherms, velocity fields, and isobars are evaluated within the reactor as well as velocity and distribution of particles. These amounts are influenced by the imposed heat flux at the lateral wall ( q 0 ). Also, it has been shown that the temperature and pressure values reached are above those required by the HTC process and, consequently, a HTC reactor could be designed with optimal operating conditions.

Suggested Citation

  • Hamza Chater & Mohamed Asbik & Abdelghani Koukouch & Ammar Mouaky & Stéphane Bostyn & Brahim Sarh & Fouzi Tabet, 2022. "Analysis of Fluid Flow and Heat Transfer inside a Batch Reactor for Hydrothermal Carbonization Process of a Biomass," Energies, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:818-:d:731593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chater, Hamza & Asbik, Mohamed & Mouaky, Ammar & Koukouch, Abdelghani & Belandria, Veronica & Sarh, Brahim, 2023. "Experimental and CFD investigation of a helical coil heat exchanger coupled with a parabolic trough solar collector for heating a batch reactor: An exergy approach," Renewable Energy, Elsevier, vol. 202(C), pages 1507-1519.
    2. Mitchell Ubene & Mohammad Heidari & Animesh Dutta, 2022. "Computational Modeling Approaches of Hydrothermal Carbonization: A Critical Review," Energies, MDPI, vol. 15(6), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
    2. Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
    3. Kai Wang & Jianliang Zhang & Shengli Wu & Jianlong Wu & Kun Xu & Jiawen Liu & Xiaojun Ning & Guangwei Wang, 2022. "Feasibility Analysis of Biomass Hydrochar Blended Coal Injection for Blast Furnace," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    4. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    5. Shen, Yafei & Yu, Shili & Ge, Shun & Chen, Xingming & Ge, Xinlei & Chen, Mindong, 2017. "Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale," Energy, Elsevier, vol. 118(C), pages 312-323.
    6. Tao Li & Guangwei Wang & Heng Zhou & Xiaojun Ning & Cuiliu Zhang, 2022. "Numerical Simulation Study on the Effects of Co-Injection of Pulverized Coal and Hydrochar into the Blast Furnace," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    7. Saari, Jussi & Sermyagina, Ekaterina & Kaikko, Juha & Vakkilainen, Esa & Sergeev, Vitaly, 2016. "Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis," Energy, Elsevier, vol. 113(C), pages 574-585.
    8. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
    9. Umut Şen & Bruno Esteves & Helena Pereira, 2023. "Pyrolysis and Extraction of Bark in a Biorefineries Context: A Critical Review," Energies, MDPI, vol. 16(13), pages 1-23, June.
    10. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    11. Chang Liu & Xin Huang & Lingzhao Kong, 2017. "Efficient Low Temperature Hydrothermal Carbonization of Chinese Reed for Biochar with High Energy Density," Energies, MDPI, vol. 10(12), pages 1-10, December.
    12. Ma, Peiyong & Yang, Jing & Xing, Xianjun & Weihrich, Sebastian & Fan, Fangyu & Zhang, Xianwen, 2017. "Isoconversional kinetics and characteristics of combustion on hydrothermally treated biomass," Renewable Energy, Elsevier, vol. 114(PB), pages 1069-1076.
    13. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba-Rec, Izabela & Szymańska-Chargot, Monika, 2020. "Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia," Energy, Elsevier, vol. 202(C).
    14. Azzaz, Ahmed Amine & Khiari, Besma & Jellali, Salah & Ghimbeu, Camélia Matei & Jeguirim, Mejdi, 2020. "Hydrochars production, characterization and application for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    15. Pablo J. Arauzo & Maciej P. Olszewski & Andrea Kruse, 2018. "Hydrothermal Carbonization Brewer’s Spent Grains with the Focus on Improving the Degradation of the Feedstock," Energies, MDPI, vol. 11(11), pages 1-15, November.
    16. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    17. Chen, Congjin & Zhu, Jingxian & Jia, Shuang & Mi, Shuai & Tong, Zhangfa & Li, Zhixia & Li, Mingfei & Zhang, Yanjuan & Hu, Yuhua & Huang, Zuqiang, 2018. "Effect of ethanol on Mulberry bark hydrothermal liquefaction and bio-oil chemical compositions," Energy, Elsevier, vol. 162(C), pages 460-475.
    18. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    19. Eunhye Song & Seyong Park & Seongkuk Han & Eusil Lee & Ho Kim, 2022. "Characteristics of Hydrothermal Carbonization Hydrochar Derived from Cattle Manure," Energies, MDPI, vol. 15(23), pages 1-14, December.
    20. Hamza S. AL-Shehri & Hamdah S. Alanazi & Areej Mohammed Shaykhayn & Lina Saad ALharbi & Wedyan Saud Alnafaei & Ali Q. Alorabi & Ali S. Alkorbi & Fahad A. Alharthi, 2022. "Adsorption of Methylene Blue by Biosorption on Alkali-Treated Solanum incanum : Isotherms, Equilibrium and Mechanism," Sustainability, MDPI, vol. 14(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:818-:d:731593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.