IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p675-d727009.html
   My bibliography  Save this article

Multi-Objective Approach for Managing Uncertain Delivery from Renewable Energy Sources within a Peer-to-Peer Energy Balancing Architecture

Author

Listed:
  • Mariusz Drabecki

    (Institute of Control and Computation Engineering, Warsaw University of Technology, 15/19 Nowowiejska Str., 00-665 Warszawa, Poland)

  • Eugeniusz Toczyłowski

    (Institute of Control and Computation Engineering, Warsaw University of Technology, 15/19 Nowowiejska Str., 00-665 Warszawa, Poland)

Abstract

On the energy markets, conscious customers may exist who are not only interested in minimising the cost of energy purchase, but, simultaneously, in optimising some other quality criteria (arising from ecological concerns, or social responsibility of the energy producers). In this paper, we develop both a mathematical optimisation problem and a market framework for balancing a power system in a peer-to-peer market setup, where product differentiation can be considered directly on the market. Thus, origins of energy may be clearly identified, and product quality characteristics can be understood by various actors (including households). We derive a multi-objective (mixed-integer) linear programming optimisation problem for balancing the energy system in a peer-to-peer energy trading environment, where not only the cost but also other additional quality criteria are considered. We have identified many possible actors to be present within the proposed market setup. They include consumers, producers, brokers and flexible prosumers with storage. The approach was tested on the IEEE 30-bus standard test system, over three different scenarios, by analysing the impact of various actors/peers activities and different extensions. It has been shown that a multi-objective energy balancing scheme may be developed through crafted optimisation problem and that each type of studied peers may bring some added value to the power system balancing.

Suggested Citation

  • Mariusz Drabecki & Eugeniusz Toczyłowski, 2022. "Multi-Objective Approach for Managing Uncertain Delivery from Renewable Energy Sources within a Peer-to-Peer Energy Balancing Architecture," Energies, MDPI, vol. 15(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:675-:d:727009
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    2. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    2. Mukherjee, Monish & Hardy, Trevor & Fuller, Jason C. & Bose, Anjan, 2022. "Implementing multi-settlement decentralized electricity market design for transactive communities with imperfect communication," Applied Energy, Elsevier, vol. 306(PA).
    3. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    4. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    5. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    6. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    7. Monyei, Chukwuka G. & Akpeji, Kingsley O. & Oladeji, Olamide & Babatunde, Olubayo M. & Aholu, Okechukwu C. & Adegoke, Damilola & Imafidon, Justus O., 2022. "Regional cooperation for mitigating energy poverty in Sub-Saharan Africa: A context-based approach through the tripartite lenses of access, sufficiency, and mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    9. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints," Applied Energy, Elsevier, vol. 317(C).
    10. Fan, Ruguo & Dong, Lili, 2018. "The dynamic analysis and simulation of government subsidy strategies in low-carbon diffusion considering the behavior of heterogeneous agents," Energy Policy, Elsevier, vol. 117(C), pages 252-262.
    11. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    12. Karlson Hargroves & Benjamin James & Joshua Lane & Peter Newman, 2023. "The Role of Distributed Energy Resources and Associated Business Models in the Decentralised Energy Transition: A Review," Energies, MDPI, vol. 16(10), pages 1-15, May.
    13. Khribich, Abir & Kacem, Rami H. & Dakhlaoui, Ahlem, 2021. "Causality nexus of renewable energy consumption and social development: Evidence from high-income countries," Renewable Energy, Elsevier, vol. 169(C), pages 14-22.
    14. Daniel Wuebben & Jens F. Peters, 2022. "Communicating the Values and Benefits of Home Solar Prosumerism," Energies, MDPI, vol. 15(2), pages 1-19, January.
    15. Haghi, Ehsan & Raahemifar, Kaamran & Fowler, Michael, 2018. "Investigating the effect of renewable energy incentives and hydrogen storage on advantages of stakeholders in a microgrid," Energy Policy, Elsevier, vol. 113(C), pages 206-222.
    16. Duarte Kazacos Winter & Rahul Khatri & Michael Schmidt, 2021. "Decentralized Prosumer-Centric P2P Electricity Market Coordination with Grid Security," Energies, MDPI, vol. 14(15), pages 1-17, August.
    17. Zhishuang Zhu & Hua Liao, 2019. "Do subsidies improve the financial performance of renewable energy companies? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 241-256, January.
    18. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
    19. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    20. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:675-:d:727009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.