IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p568-d724215.html
   My bibliography  Save this article

A Proportional Digital Controller to Monitor Load Variation in Wind Turbine Systems

Author

Listed:
  • José Gibergans-Báguena

    (Department of Mathematics, ESEIAAT-Universitat Politècnica de Catalunya (UPC), 08222 Terrassa, Spain
    These authors contributed equally to this work.)

  • Pablo Buenestado

    (Department of Mathematics, EEBE-Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
    These authors contributed equally to this work.)

  • Gisela Pujol-Vázquez

    (Department of Mathematics, ESEIAAT-Universitat Politècnica de Catalunya (UPC), 08222 Terrassa, Spain
    These authors contributed equally to this work.)

  • Leonardo Acho

    (Department of Mathematics, ESEIAAT-Universitat Politècnica de Catalunya (UPC), 08222 Terrassa, Spain
    These authors contributed equally to this work.)

Abstract

Monitoring the variation of the loading blades is fundamental due to its importance in the behavior of the wind turbine system. Blade performance can be affected by different loads that alter energy conversion efficiency and cause potential safety hazards. An example of this is icing on the blades. Therefore, the main objective of this work is to propose a proportional digital controller capable of detecting load variations in wind turbine blades together with a fault detection method. An experimental platform is then built to experimentally validate the main contribution of the article. This platform employs an automotive throttle device as a blade system emulator of a wind turbine pitch system. In addition, a statistical fault detection algorithm is established based on the point change methodology. Experimental data support our approach.

Suggested Citation

  • José Gibergans-Báguena & Pablo Buenestado & Gisela Pujol-Vázquez & Leonardo Acho, 2022. "A Proportional Digital Controller to Monitor Load Variation in Wind Turbine Systems," Energies, MDPI, vol. 15(2), pages 1-27, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:568-:d:724215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Njiri, Jackson G. & Beganovic, Nejra & Do, Manh H. & Söffker, Dirk, 2019. "Consideration of lifetime and fatigue load in wind turbine control," Renewable Energy, Elsevier, vol. 131(C), pages 818-828.
    2. Yang, Bin & Sun, Dongbai, 2013. "Testing, inspecting and monitoring technologies for wind turbine blades: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 515-526.
    3. Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
    4. Gisela Pujol-Vazquez & Leonardo Acho & José Gibergans-Báguena, 2020. "Fault Detection Algorithm for Wind Turbines’ Pitch Actuator Systems," Energies, MDPI, vol. 13(11), pages 1-14, June.
    5. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    6. Yolanda Vidal & Christian Tutivén & José Rodellar & Leonardo Acho, 2015. "Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller with a Disturbance Compensator," Energies, MDPI, vol. 8(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Do, M. Hung & Söffker, Dirk, 2021. "State-of-the-art in integrated prognostics and health management control for utility-scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    4. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    5. Mazare, Mahmood & Taghizadeh, Mostafa & Ghaf-Ghanbari, Pegah, 2021. "Fault tolerant control of wind turbines with simultaneous actuator and sensor faults using adaptive time delay control," Renewable Energy, Elsevier, vol. 174(C), pages 86-101.
    6. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    7. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    8. Bon-Yong Koo & Dae-Yi Jung, 2019. "A Comparative Study on Primary Bearing Rating Life of a 5-MW Two-Blade Wind Turbine System Based on Two Different Control Domains," Energies, MDPI, vol. 12(13), pages 1-16, July.
    9. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    10. Wang, Han & Yan, Jie & Han, Shuang & Liu, Yongqian, 2020. "Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs," Renewable Energy, Elsevier, vol. 157(C), pages 256-272.
    11. Nejra Beganovic & Jackson G. Njiri & Dirk Söffker, 2018. "Reduction of Structural Loads in Wind Turbines Based on an Adapted Control Strategy Concerning Online Fatigue Damage Evaluation Models," Energies, MDPI, vol. 11(12), pages 1-15, December.
    12. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
    13. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    14. Hossein Madi & Dmytro Lytvynenko & Tilman Schildhauer & Peter Jansohn, 2023. "Decarbonisation of Geographical Islands and the Feasibility of Green Hydrogen Production Using Excess Electricity," Energies, MDPI, vol. 16(10), pages 1-18, May.
    15. Rongyong Zhao & Daheng Dong & Cuiling Li & Steven Liu & Hao Zhang & Miyuan Li & Wenzhong Shen, 2020. "An Improved Power Control Approach for Wind Turbine Fatigue Balancing in an Offshore Wind Farm," Energies, MDPI, vol. 13(7), pages 1-20, March.
    16. Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
    17. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    18. Luo, Kai & Chen, Liang & Liang, Wei, 2022. "Structural health monitoring of carbon fiber reinforced polymer composite laminates for offshore wind turbine blades based on dual maximum correlation coefficient method," Renewable Energy, Elsevier, vol. 201(P1), pages 1163-1175.
    19. Lu, Liang & Wu, Haijun & Wu, Jianzhong, 2021. "A case study for the optimization of moment-matching in wind turbine blade fatigue tests with a resonant type exciting approach," Renewable Energy, Elsevier, vol. 174(C), pages 769-785.
    20. Chandrasekhar, Kartik & Stevanovic, Nevena & Cross, Elizabeth J. & Dervilis, Nikolaos & Worden, Keith, 2021. "Damage detection in operational wind turbine blades using a new approach based on machine learning," Renewable Energy, Elsevier, vol. 168(C), pages 1249-1264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:568-:d:724215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.