IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p450-d721026.html
   My bibliography  Save this article

Blending of Hydrothermal Liquefaction Biocrude with Residual Marine Fuel: An Experimental Assessment

Author

Listed:
  • Andrea Maria Rizzo

    (Renewable Energy Consortium for Research and Demonstration (RE-CORD), Scarperia e San Piero, 50038 Florence, Italy
    Department of Industrial Engineering, University of Florence, 50134 Florence, Italy)

  • David Chiaramonti

    (Renewable Energy Consortium for Research and Demonstration (RE-CORD), Scarperia e San Piero, 50038 Florence, Italy
    Department of Energy “Galileo Ferraris”, Polytechnic of Turin, 10129 Turin, Italy)

Abstract

As with all transport modes, the maritime sector is undergoing a drastic transition towards net zero, similar to the path in which Aviation is already engaged through global decarbonization programs such as CORSIA for the International Civil Aviation Organization, or the Emission trading Scheme of the European Union). Maritime indeed shares with Aviation a common element: the difficulty of shifting to electric in the short to medium term. Therefore, the use of sustainable fuels represents the main and only relevant option in this timeframe. As sustainable biofuels will be used as blend components in the case of large-scale deployment, it is necessary to investigate the behavior of bio- and fossil-based fuels when mixed in various percentages, in particular for low quality products such as HTL (HydroThermal Liquefaction) and fast pyrolysis oils from lignocellulosic biomass and waste. Biocrude from subcritical hydrothermal liquefaction of undigested sewage sludge, produced at reaction conditions of 350 °C and 200 bar in a continuous HTL pilot scale unit, was manually mixed at 70 °C with residual marine fuel (low-sulphur type F-RMG-380 per ISO 8217) at two different nominal biocrude shares, respectively 10 wt.% and 20 wt.% in the mixture. While the former blend resulted in the technically complete dissolution of biocrude in the fossil component, the latter sample formed biocrude agglomerates and only partial dissolution of the biocrude aliquot in marine fuel could be achieved (calculated between 14–16 wt.%). The blend with 10 wt.% of SS biocrude in the mixture resulted in compliance with limits of total acid number (TAN), inorganics (in particular vanadium, sodium, silicon and aluminum) and sulphur content, while only the ash content was slightly above the limit.

Suggested Citation

  • Andrea Maria Rizzo & David Chiaramonti, 2022. "Blending of Hydrothermal Liquefaction Biocrude with Residual Marine Fuel: An Experimental Assessment," Energies, MDPI, vol. 15(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:450-:d:721026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/450/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/450/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.
    2. Jerome A. Ramirez & Richard J. Brown & Thomas J. Rainey, 2015. "A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels," Energies, MDPI, vol. 8(7), pages 1-30, July.
    3. Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    2. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    3. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    4. Beims, R.F. & Simonato, C.L. & Wiggers, V.R., 2019. "Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 521-529.
    5. Ayaz Ali Shah & Saqib Sohail Toor & Asbjørn Haaning Nielsen & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2021. "Bio-Crude Production through Recycling of Pretreated Aqueous Phase via Activated Carbon," Energies, MDPI, vol. 14(12), pages 1-20, June.
    6. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
    7. Qian, Lili & Wang, Shuzhong & Savage, Phillip E., 2020. "Fast and isothermal hydrothermal liquefaction of sludge at different severities: Reaction products, pathways, and kinetics," Applied Energy, Elsevier, vol. 260(C).
    8. Sangjan, Amornrat & Ngamsiri, Pornthip & Klomkliang, Nikom & Wu, Kevin C.-W. & Matsagar, Babasaheb M. & Ratchahat, Sakhon & Liu, Chen-Guang & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2020. "Effect of microwave-assisted wet torrefaction on liquefaction of biomass from palm oil and sugarcane wastes to bio-oil and carbon nanodots/nanoflakes by hydrothermolysis and solvothermolysis," Renewable Energy, Elsevier, vol. 154(C), pages 1204-1217.
    9. Gu, X. & Martinez-Fernandez, J.S. & Pang, N. & Fu, X. & Chen, S., 2020. "Recent development of hydrothermal liquefaction for algal biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Jukka Lappalainen & David Baudouin & Ursel Hornung & Julia Schuler & Kristian Melin & Saša Bjelić & Frédéric Vogel & Jukka Konttinen & Tero Joronen, 2020. "Sub- and Supercritical Water Liquefaction of Kraft Lignin and Black Liquor Derived Lignin," Energies, MDPI, vol. 13(13), pages 1-45, June.
    11. Nikolaos Montesantos & Marco Maschietti, 2020. "Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery," Energies, MDPI, vol. 13(7), pages 1-35, April.
    12. Edoardo Miliotti & Stefano Dell’Orco & Giulia Lotti & Andrea Maria Rizzo & Luca Rosi & David Chiaramonti, 2019. "Lignocellulosic Ethanol Biorefinery: Valorization of Lignin-Rich Stream through Hydrothermal Liquefaction," Energies, MDPI, vol. 12(4), pages 1-27, February.
    13. Foster, William & Azimov, Ulugbek & Gauthier-Maradei, Paola & Molano, Liliana Castro & Combrinck, Madeleine & Munoz, Jose & Esteves, Jaime Jaimes & Patino, Luis, 2021. "Waste-to-energy conversion technologies in the UK: Processes and barriers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    15. Junying Chen & Lijun Wang & Bo Zhang & Rui Li & Abolghasem Shahbazi, 2018. "Hydrothermal Liquefaction Enhanced by Various Chemicals as a Means of Sustainable Dairy Manure Treatment," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    16. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    17. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    18. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    19. Ekaterina Ovsyannikova & Andrea Kruse & Gero C. Becker, 2020. "Feedstock-Dependent Phosphate Recovery in a Pilot-Scale Hydrothermal Liquefaction Bio-Crude Production," Energies, MDPI, vol. 13(2), pages 1-21, January.
    20. Xinhua Shen & Raghava R. Kommalapati & Ziaul Huque, 2015. "The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass," Sustainability, MDPI, vol. 7(10), pages 1-14, September.

    More about this item

    Keywords

    biocrude; marine fuel; blend;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:450-:d:721026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.