IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9574-d1006077.html
   My bibliography  Save this article

Investigation of Multiple Degradation Mechanisms of a Proton Exchange Membrane Fuel Cell under Dynamic Operation

Author

Listed:
  • Huu Linh Nguyen

    (Department of Mechanical Engineering, Graduate School, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea)

  • Jaesu Han

    (Department of Mechanical Engineering, Graduate School, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea)

  • Hoang Nghia Vu

    (Department of Mechanical Engineering, Graduate School, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea)

  • Sangseok Yu

    (School of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea)

Abstract

In this paper, a new voltage aging model for the polymer electrolyte membrane fuel cell (PEMFC), which includes multiple degradation mechanisms for proton exchange membrane fuel cells, is proposed. The model parameters are identified using a curve-fitting procedure based on long-term experimental data for the modular stack under the New European Driving Cycle (NEDC). A good fit was found between the model and experimental data, with R-squared values greater than 0.99 for all simulation cases. Moreover, according to the model sensitivity analysis, the voltage degradation model is most sensitive to load current, followed by time. The effect of operating temperature on performance, voltage degradation, and lifetime is investigated. After 300 h, significant performance loss was detected. When the temperature is raised to 75 °C, voltage degradation becomes worse. Based on the simulated voltage degradation profiles at 55 °C and 75 °C, PEMFCs have reached the end of their useful lives at 1100 h and 600 h, respectively. The simulation model indicates that the model is capable of forecasting how long the fuel cell will last under specified operational conditions and drive cycles.

Suggested Citation

  • Huu Linh Nguyen & Jaesu Han & Hoang Nghia Vu & Sangseok Yu, 2022. "Investigation of Multiple Degradation Mechanisms of a Proton Exchange Membrane Fuel Cell under Dynamic Operation," Energies, MDPI, vol. 15(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9574-:d:1006077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ke Song & Yimin Wang & Xiao Hu & Jing Cao, 2020. "Online Prediction of Vehicular Fuel Cell Residual Lifetime Based on Adaptive Extended Kalman Filter," Energies, MDPI, vol. 13(23), pages 1-21, November.
    2. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    3. Huu Linh Nguyen & Jeasu Han & Xuan Linh Nguyen & Sangseok Yu & Young-Mo Goo & Duc Dung Le, 2021. "Review of the Durability of Polymer Electrolyte Membrane Fuel Cell in Long-Term Operation: Main Influencing Parameters and Testing Protocols," Energies, MDPI, vol. 14(13), pages 1-34, July.
    4. Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
    5. Jouin, Marine & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine, 2016. "Degradations analysis and aging modeling for health assessment and prognostics of PEMFC," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 78-95.
    6. Noacco, Valentina & Sarrazin, Fanny & Pianosi, Francesca & Wagener, Thorsten, 2019. "Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox," Earth Arxiv pu83z, Center for Open Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Bäumler & Jianwen Meng & Abdelmoudjib Benterki & Toufik Azib & Moussa Boukhnifer, 2023. "A System-Level Modeling of PEMFC Considering Degradation Aspect towards a Diagnosis Process," Energies, MDPI, vol. 16(14), pages 1-19, July.
    2. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    3. Guangjin Pan & Yunpeng Bai & Huihui Song & Yanbin Qu & Yang Wang & Xiaofei Wang, 2023. "Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies," Energies, MDPI, vol. 16(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    2. Zhu, Li & Chen, Junghui, 2018. "Prognostics of PEM fuel cells based on Gaussian process state space models," Energy, Elsevier, vol. 149(C), pages 63-73.
    3. Jouin, Marine & Bressel, Mathieu & Morando, Simon & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine & Jemei, Samir & Hilairet, Mickael & Ould Bouamama, Belkacem, 2016. "Estimating the end-of-life of PEM fuel cells: Guidelines and metrics," Applied Energy, Elsevier, vol. 177(C), pages 87-97.
    4. Wang, Chu & Li, Zhongliang & Outbib, Rachid & Dou, Manfeng & Zhao, Dongdong, 2022. "Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 305(C).
    5. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    6. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    7. Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
    8. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    9. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2021. "Prognosis of fuel cell degradation under different applications using wavelet analysis and nonlinear autoregressive exogenous neural network," Renewable Energy, Elsevier, vol. 179(C), pages 802-814.
    10. Aihua Tang & Yuanhang Yang & Quanqing Yu & Zhigang Zhang & Lin Yang, 2022. "A Review of Life Prediction Methods for PEMFCs in Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    11. Mezzi, Rania & Yousfi-Steiner, Nadia & Péra, Marie Cécile & Hissel, Daniel & Larger, Laurent, 2021. "An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile," Applied Energy, Elsevier, vol. 283(C).
    12. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.
    13. Liu, Hao & Chen, Jian & Hissel, Daniel & Su, Hongye, 2019. "Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method," Applied Energy, Elsevier, vol. 237(C), pages 910-919.
    14. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    15. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    16. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    17. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    18. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    19. Lv, Xiuqing & Chen, Huili & Zhou, Wei & Li, Si-Dian & Cheng, Fangqin & Shao, Zongping, 2022. "SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells," Renewable Energy, Elsevier, vol. 185(C), pages 8-16.
    20. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9574-:d:1006077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.