IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8717-d978384.html
   My bibliography  Save this article

The Recycling of Waste Per-Fluorinated Sulfonic Acid for Reformulation and Membrane Application in Iron-Chromium Redox Flow Batteries

Author

Listed:
  • Quan Xu

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
    Zhonghai Energy Storage Technology (Beijing) Co., Ltd., Beijing 102200, China)

  • Xinyi Chen

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China)

  • Siyang Wang

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
    Zhonghai Energy Storage Technology (Beijing) Co., Ltd., Beijing 102200, China)

  • Chao Guo

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
    Zhonghai Energy Storage Technology (Beijing) Co., Ltd., Beijing 102200, China)

  • Yingchun Niu

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
    Zhonghai Energy Storage Technology (Beijing) Co., Ltd., Beijing 102200, China)

  • Runguo Zuo

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China)

  • Ziji Yang

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China)

  • Yang Zhou

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
    Zhonghai Energy Storage Technology (Beijing) Co., Ltd., Beijing 102200, China)

  • Chunming Xu

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China)

Abstract

Iron–chromium redox flow batteries (ICRFB) possess the advantage of low raw material cost, intrinsic safety, long charge–discharge cycle life, good life-cycle economy, and environmental friendliness, which has attracted attention from academia and industry over time. The proton exchange membrane (PEM) is an important part of the ICRFB system, impacting the efficiency and lifetime of the battery. Currently, the most widely used PEMs in the market are per-fluorinated sulfonic acid (PFSA) membranes, which possess high electrolyte stability and achieve the separation of positive and negative electrolytes. In addition, the complex preparation process and extremely high market price limited the usage of PEM in ICRFB. In this paper, we developed a remanufactured membrane (RM) strategy from waste PFSA resins. The RM has higher electrical conductivity and better proton transport ability than the commodity membrane N212. In the cell performance test, the RM exhibits similar coulombic efficiency (CE) as N212 at different current densities, which is stabilized at over 95%. Furthermore, the voltage efficiency (VE) and energy efficiency (EE) of the RM are improved compared to N212. At a current strength of 140 mA cm −2 , the degree of energy loss is lower in the RM, and after 60 cycles, the capacity decay rate is lower by only 16.66%, leading to long-term battery life. It is a cost-effective method for membrane recovery and reformulation, which is suitable for large-scale application of ICRFB in the future.

Suggested Citation

  • Quan Xu & Xinyi Chen & Siyang Wang & Chao Guo & Yingchun Niu & Runguo Zuo & Ziji Yang & Yang Zhou & Chunming Xu, 2022. "The Recycling of Waste Per-Fluorinated Sulfonic Acid for Reformulation and Membrane Application in Iron-Chromium Redox Flow Batteries," Energies, MDPI, vol. 15(22), pages 1-10, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8717-:d:978384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Xiangrong & Xiong, Jing & Tang, Ao & Qin, Ye & Liu, Jianguo & Yan, Chuanwei, 2018. "Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery," Applied Energy, Elsevier, vol. 211(C), pages 1050-1059.
    2. Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
    3. Zhao, Pan & Wang, Peizi & Xu, Wenpan & Zhang, Shiqiang & Wang, Jiangfeng & Dai, Yiping, 2021. "The survey of the combined heat and compressed air energy storage (CH-CAES) system with dual power levels turbomachinery configuration for wind power peak shaving based spectral analysis," Energy, Elsevier, vol. 215(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shujuan Meng & Binyu Xiong & Tuti Mariana Lim, 2019. "Model-Based Condition Monitoring of a Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(15), pages 1-16, August.
    2. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    3. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    4. Sun, Jie & Zheng, Menglian & Yang, Zhongshu & Yu, Zitao, 2019. "Flow field design pathways from lab-scale toward large-scale flow batteries," Energy, Elsevier, vol. 173(C), pages 637-646.
    5. Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
    7. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
    8. Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
    10. Zhao, Pan & Gou, Feifei & Xu, Wenpan & Shi, Honghui & Wang, Jiangfeng, 2023. "Energy, exergy, economic and environmental (4E) analyses of an integrated system based on CH-CAES and electrical boiler for wind power penetration and CHP unit heat-power decoupling in wind enrichment," Energy, Elsevier, vol. 263(PC).
    11. Tan, Peng & Xiao, Xu & Dai, Yawen & Cheng, Chun & Ni, Meng, 2020. "Photo-assisted non-aqueous lithium-oxygen batteries: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Liu, Yongbin & Yu, Lihong & Liu, Le & Xi, Jingyu, 2021. "Tailoring the vanadium/proton ratio of electrolytes to boost efficiency and stability of vanadium flow batteries over a wide temperature range," Applied Energy, Elsevier, vol. 301(C).
    13. Ye, Lin & Li, Yilin & Pei, Ming & Zhao, Yongning & Li, Zhuo & Lu, Peng, 2022. "A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching," Applied Energy, Elsevier, vol. 327(C).
    14. Razmi, Amir Reza & Soltani, M. & Ardehali, Armin & Gharali, Kobra & Dusseault, M.B. & Nathwani, Jatin, 2021. "Design, thermodynamic, and wind assessments of a compressed air energy storage (CAES) integrated with two adjacent wind farms: A case study at Abhar and Kahak sites, Iran," Energy, Elsevier, vol. 221(C).
    15. Sun, X.Y. & Zhong, X.H. & Zhang, M.Y. & Zhou, T., 2022. "Experimental investigation on a novel wind-to-heat system with high efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Muhammed Y. Worku, 2022. "Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    17. Sun, J. & Jiang, H.R. & Zhang, B.W. & Chao, C.Y.H. & Zhao, T.S., 2020. "Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 259(C).
    18. Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
    19. Ma, Yan & Rao, QiuHua & Huang, Dianyi & Li, Peng & Yi, Wei & Sun, Dongliang, 2022. "A new theoretical model of thermo-gas-mechanical (TGM) coupling field for underground multi-layered cavern of compressed air energy storage," Energy, Elsevier, vol. 257(C).
    20. Kim, Jungmyung & Park, Heesung, 2018. "Impact of nanofluidic electrolyte on the energy storage capacity in vanadium redox flow battery," Energy, Elsevier, vol. 160(C), pages 192-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8717-:d:978384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.