IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v271y2020ics0306261920307649.html
   My bibliography  Save this article

Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery

Author

Listed:
  • Wang, Shaoliang
  • Xu, Zeyu
  • Wu, Xiaoliang
  • Zhao, Huan
  • Zhao, Jinling
  • Liu, Jianguo
  • Yan, Chuanwei
  • Fan, Xinzhuang

Abstract

In order to improve the electrochemical performance of iron-chromium flow battery, a series of electrolytes with x M FeCl2 + x M CrCl3 + 3.0 M HCl (x = 0.5, 0.75, 1.0, 1.25) and 1.0 M FeCl2 + 1.0 M CrCl3 + y M HCl (y = 1.0, 2.0, 3.0, 4.0) are prepared, and the effect of electrolyte concentration on the electrochemical performance of iron-chromium flow battery are firstly investigated. The viscosity of electrolyte increases along with the increasing concentration of FeCl2, CrCl3 and HCl, however, the corresponding conductivity decreases with the increasing concentration of FeCl2 and CrCl3 but increases with the increasing HCl concentration. It is worth noting that the electrolyte with 1.0 M FeCl2, 1.0 M CrCl3 and 3.0 M HCl presents the best electrochemical performance due to the synergistic effect of viscosity, conductivity and electrochemical activity. Most importantly, iron-chromium flow battery with the optimized electrolyte presents excellent battery efficiency (coulombic efficiency: 97.4%; energy efficiency: 81.5%) when the operating current density is high up to 120 mA cm−2. This work can improve the battery performance of iron-chromium flow battery more efficiently, and further provide theoretical guidance and data support to its engineering application.

Suggested Citation

  • Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:appene:v:271:y:2020:i:c:s0306261920307649
    DOI: 10.1016/j.apenergy.2020.115252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
    2. Li, Xiangrong & Xiong, Jing & Tang, Ao & Qin, Ye & Liu, Jianguo & Yan, Chuanwei, 2018. "Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery," Applied Energy, Elsevier, vol. 211(C), pages 1050-1059.
    3. Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
    4. Xu, Q. & Zhao, T.S. & Zhang, C., 2014. "Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 130(C), pages 139-147.
    5. Mohamed, M.R. & Leung, P.K. & Sulaiman, M.H., 2015. "Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system," Applied Energy, Elsevier, vol. 137(C), pages 402-412.
    6. Guarnieri, Massimo & Trovò, Andrea & D'Anzi, Angelo & Alotto, Piergiorgio, 2018. "Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments," Applied Energy, Elsevier, vol. 230(C), pages 1425-1434.
    7. Wei, L. & Zhao, T.S. & Zeng, L. & Zhou, X.L. & Zeng, Y.K., 2016. "Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries," Applied Energy, Elsevier, vol. 180(C), pages 386-391.
    8. Di Blasi, O. & Briguglio, N. & Busacca, C. & Ferraro, M. & Antonucci, V. & Di Blasi, A., 2015. "Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery," Applied Energy, Elsevier, vol. 147(C), pages 74-81.
    9. Zeng, Y.K. & Zhao, T.S. & Zhou, X.L. & Zeng, L. & Wei, L., 2016. "The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries," Applied Energy, Elsevier, vol. 182(C), pages 204-209.
    10. Chen, Hui & Li, Xiangrong & Gao, Hai & Liu, Jianguo & Yan, Chuanwei & Tang, Ao, 2019. "Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay," Applied Energy, Elsevier, vol. 247(C), pages 13-23.
    11. Peker, Meltem & Kocaman, Ayse Selin & Kara, Bahar Y., 2018. "Benefits of transmission switching and energy storage in power systems with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 1182-1197.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, L. & Zhao, T.S. & Zeng, L. & Zhou, X.L. & Zeng, Y.K., 2016. "Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries," Applied Energy, Elsevier, vol. 180(C), pages 386-391.
    2. Kim, Jungmyung & Park, Heesung, 2017. "Experimental analysis of discharge characteristics in vanadium redox flow battery," Applied Energy, Elsevier, vol. 206(C), pages 451-457.
    3. Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
    4. Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
    5. Wei, L. & Zhao, T.S. & Xu, Q. & Zhou, X.L. & Zhang, Z.H., 2017. "In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 190(C), pages 1112-1118.
    6. Jiang, H.R. & Wu, M.C. & Ren, Y.X. & Shyy, W. & Zhao, T.S., 2018. "Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries," Applied Energy, Elsevier, vol. 213(C), pages 366-374.
    7. Souentie, Stamatios & Amr, Issam & Alsuhaibani, Abdulrahman & Almazroei, Essa & Hammad, Ahmad D., 2017. "Temperature, charging current and state of charge effects on iron-vanadium flow batteries operation," Applied Energy, Elsevier, vol. 206(C), pages 568-576.
    8. Pugach, M. & Vyshinsky, V. & Bischi, A., 2019. "Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
    10. Chou, Yi-Sin & Hsu, Ning-Yih & Jeng, King-Tsai & Chen, Kuan-Hsiang & Yen, Shi-Chern, 2016. "A novel ultrasonic velocity sensing approach to monitoring state of charge of vanadium redox flow battery," Applied Energy, Elsevier, vol. 182(C), pages 253-259.
    11. Yuan, Chenguang & Xing, Feng & Zheng, Qiong & Zhang, Huamin & Li, Xianfeng & Ma, Xiangkun, 2020. "Factor analysis of the uniformity of the transfer current density in vanadium flow battery by an improved three-dimensional transient model," Energy, Elsevier, vol. 194(C).
    12. Ren, Y.X. & Zhao, T.S. & Tan, P. & Wei, Z.H. & Zhou, X.L., 2017. "Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions," Applied Energy, Elsevier, vol. 187(C), pages 706-716.
    13. Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
    14. Leung, P. & Martin, T. & Liras, M. & Berenguer, A.M. & Marcilla, R. & Shah, A. & An, L. & Anderson, M.A. & Palma, J., 2017. "Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries," Applied Energy, Elsevier, vol. 197(C), pages 318-326.
    15. Jiang, H.R. & Shyy, W. & Wu, M.C. & Zhang, R.H. & Zhao, T.S., 2019. "A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 105-113.
    16. Jiang, H.R. & Shyy, W. & Ren, Y.X. & Zhang, R.H. & Zhao, T.S., 2019. "A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 544-553.
    17. Wang, Tao & Fu, Jiahui & Zheng, Menglian & Yu, Zitao, 2018. "Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 227(C), pages 613-623.
    18. Kim, Jungmyung & Park, Heesung, 2019. "Electrokinetic parameters of a vanadium redox flow battery with varying temperature and electrolyte flow rate," Renewable Energy, Elsevier, vol. 138(C), pages 284-291.
    19. Zhang, Yunong & Liu, Le & Xi, Jingyu & Wu, Zenghua & Qiu, Xinping, 2017. "The benefits and limitations of electrolyte mixing in vanadium flow batteries," Applied Energy, Elsevier, vol. 204(C), pages 373-381.
    20. Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode," Applied Energy, Elsevier, vol. 213(C), pages 293-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:271:y:2020:i:c:s0306261920307649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.