IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318859.html
   My bibliography  Save this article

Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries

Author

Listed:
  • Sun, J.
  • Jiang, H.R.
  • Zhang, B.W.
  • Chao, C.Y.H.
  • Zhao, T.S.

Abstract

Enhancing the hydraulic permeability of electrodes along both the through-plane and in-plane directions is essential in flow-field structured vanadium redox flow batteries, as it can promote uniform distributions of reactants, lower the concentration overpotential, and therefore improve battery performances. In this work, uniaxially-aligned carbon fiber electrodes with the fiber diameter ranging from 7 to 12 µm (average ~10 µm) are fabricated by electrospinning method. Attributed to the enhanced permeability of the aligned structure, the battery assembled with the prepared electrodes exhibits an energy efficiency of 84.4% at a current density of 100 mA cm−2, which is 13.2% higher than that with conventional electrospun fiber electrodes. The permeability in the in-plane direction is further tailored by adjusting the orientation of aligned fibers against the flow channels. Results show that when the orientation of aligned fibers is perpendicular to the direction of flow channels, the battery delivers the largest discharge capacity and the highest limiting current density (~900 mA cm−2). Such an enhancement in the battery performance can be ascribed to the more uniform in-plane distribution of reactants and current by maximizing the permeability along the direction vertical to the flow channels, as evidenced by a three-dimensional model.

Suggested Citation

  • Sun, J. & Jiang, H.R. & Zhang, B.W. & Chao, C.Y.H. & Zhao, T.S., 2020. "Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318859
    DOI: 10.1016/j.apenergy.2019.114198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Yikai & Yang, Zhifei & Lu, Fei & Xie, Yongliang, 2019. "A novel tin-bromine redox flow battery for large-scale energy storage," Applied Energy, Elsevier, vol. 255(C).
    2. Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
    3. Jiang, H.R. & Shyy, W. & Wu, M.C. & Zhang, R.H. & Zhao, T.S., 2019. "A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 233, pages 105-113.
    4. Wei, L. & Zhao, T.S. & Zhao, G. & An, L. & Zeng, L., 2016. "A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 176(C), pages 74-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kurilovich, Aleksandr A. & Trovò, Andrea & Pugach, Mikhail & Stevenson, Keith J. & Guarnieri, Massimo, 2022. "Prospect of modeling industrial scale flow batteries – From experimental data to accurate overpotential identification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Hsu, Ning-Yih & Devi, Nitika & Lin, Yu-I & Hu, Yi-Hsin & Ku, Hung-Hsien & Arpornwichanop, Amornchai & Chen, Yong-Song, 2022. "Study on the effect of electrode configuration on the performance of a hydrogen/vanadium redox flow battery," Renewable Energy, Elsevier, vol. 190(C), pages 658-663.
    3. Wan, Shuaibin & Liang, Xiongwei & Jiang, Haoran & Sun, Jing & Djilali, Ned & Zhao, Tianshou, 2021. "A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries," Applied Energy, Elsevier, vol. 298(C).
    4. Sun, J. & Jiang, H.R. & Wu, M.C. & Fan, X.Z. & Chao, C.Y.H. & Zhao, T.S., 2020. "Aligned hierarchical electrodes for high-performance aqueous redox flow battery," Applied Energy, Elsevier, vol. 271(C).
    5. Zhang, Kaiyue & Xiong, Jing & Yan, Chuanwei & Tang, Ao, 2020. "In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design," Applied Energy, Elsevier, vol. 272(C).
    6. Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zhang, Kaiyue & Xiong, Jing & Yan, Chuanwei & Tang, Ao, 2020. "In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design," Applied Energy, Elsevier, vol. 272(C).
    3. Wang, Rui & Li, Yinshi & Wang, Yanning & Fang, Zhou, 2020. "Phosphorus-doped graphite felt allowing stabilized electrochemical interface and hierarchical pore structure for redox flow battery," Applied Energy, Elsevier, vol. 261(C).
    4. Shujuan Meng & Binyu Xiong & Tuti Mariana Lim, 2019. "Model-Based Condition Monitoring of a Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(15), pages 1-16, August.
    5. Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
    6. Ren, Y.X. & Zhao, T.S. & Tan, P. & Wei, Z.H. & Zhou, X.L., 2017. "Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions," Applied Energy, Elsevier, vol. 187(C), pages 706-716.
    7. Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Jiang, H.R. & Zeng, Y.K. & Wu, M.C. & Shyy, W. & Zhao, T.S., 2019. "A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 240(C), pages 226-235.
    9. Leung, P. & Martin, T. & Liras, M. & Berenguer, A.M. & Marcilla, R. & Shah, A. & An, L. & Anderson, M.A. & Palma, J., 2017. "Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries," Applied Energy, Elsevier, vol. 197(C), pages 318-326.
    10. Kim, Jungmyung & Park, Heesung, 2018. "Impact of nanofluidic electrolyte on the energy storage capacity in vanadium redox flow battery," Energy, Elsevier, vol. 160(C), pages 192-199.
    11. Alexandros Arsalis & George E. Georghiou & Panos Papanastasiou, 2022. "Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems," Energies, MDPI, vol. 15(10), pages 1-24, May.
    12. Wang, Tao & Fu, Jiahui & Zheng, Menglian & Yu, Zitao, 2018. "Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 227(C), pages 613-623.
    13. Culcasi, Andrea & Gurreri, Luigi & Zaffora, Andrea & Cosenza, Alessandro & Tamburini, Alessandro & Micale, Giorgio, 2020. "On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients," Applied Energy, Elsevier, vol. 277(C).
    14. Tan, Peng & Xiao, Xu & Dai, Yawen & Cheng, Chun & Ni, Meng, 2020. "Photo-assisted non-aqueous lithium-oxygen batteries: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    15. Wei, L. & Zhao, T.S. & Zeng, L. & Zhou, X.L. & Zeng, Y.K., 2016. "Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries," Applied Energy, Elsevier, vol. 180(C), pages 386-391.
    16. Quan Xu & Xinyi Chen & Siyang Wang & Chao Guo & Yingchun Niu & Runguo Zuo & Ziji Yang & Yang Zhou & Chunming Xu, 2022. "The Recycling of Waste Per-Fluorinated Sulfonic Acid for Reformulation and Membrane Application in Iron-Chromium Redox Flow Batteries," Energies, MDPI, vol. 15(22), pages 1-10, November.
    17. Wan, Shuaibin & Liang, Xiongwei & Jiang, Haoran & Sun, Jing & Djilali, Ned & Zhao, Tianshou, 2021. "A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries," Applied Energy, Elsevier, vol. 298(C).
    18. Fang, Yuan & Zhang, Tingting & Wang, Yonghui & Chen, Yuanzhen & Liu, Yan & Wu, Wenling & Zhu, Jianfeng, 2020. "The highly efficient cathode of framework structural Fe2O3/Mn2O3 in passive direct methanol fuel cells," Applied Energy, Elsevier, vol. 259(C).
    19. Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
    20. Bates, Alex M. & Paxton, William F. & Spurgeon, Joshua M. & Park, Sam D. & Sunkara, Mahendra K., 2021. "Earth-abundant redox couples using durable boron doped diamond electrodes: Beyond vanadium redox couples," Applied Energy, Elsevier, vol. 282(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.