IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7897-d952143.html
   My bibliography  Save this article

Parametric Investigation on the Electrical-Thermal Performance of Battery Modules with a Pumped Two-Phase Cooling System

Author

Listed:
  • Jun Wang

    (Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lin Ruan

    (Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Ruiwei Li

    (Institute of Electrical Engineering Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The pumped two-phase cooling method is a practical way to dissipate heat from the battery module. The operating parameters of the cooling system should be investigated thoroughly to improve the performance of the battery thermal management system (BTMS). However, the previous BTMS designs only explored the thermal performance and ignored the electrical performance in the battery module. This study designed a pumped two-phase cooling BTMS with the refrigerant of R1233zd. An electrothermal coupled model was established for a series-connected battery module to predict thermal and electrical behavior. The results showed that the pumped two-phase cooling system could obtain excellent cooling performance with low system pressure under 2C discharging condition. The average temperature of the module and the temperature difference among cells could be maintained under 40 °C and 5 K under a 2C discharging rate. A lower saturation temperature, higher mass flux, and higher subcooling degree could enhance heat dissipation for the cooling system based on R1233zd. An increase in the saturation temperature and a decrease in the subcooling degree could enhance the temperature uniformity within the module. The battery consistency was mainly dominated by the temperature difference and deteriorated with a lower average temperature in the pack. The research outcome of this paper can guide the design and optimization of the pumped two-phase cooling BTMS.

Suggested Citation

  • Jun Wang & Lin Ruan & Ruiwei Li, 2022. "Parametric Investigation on the Electrical-Thermal Performance of Battery Modules with a Pumped Two-Phase Cooling System," Energies, MDPI, vol. 15(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7897-:d:952143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosseinzadeh, Elham & Arias, Sebastian & Krishna, Muthu & Worwood, Daniel & Barai, Anup & Widanalage, Dhammika & Marco, James, 2021. "Quantifying cell-to-cell variations of a parallel battery module for different pack configurations," Applied Energy, Elsevier, vol. 282(PA).
    2. Samimi, Fereshteh & Babapoor, Aziz & Azizi, Mohammadmehdi & Karimi, Gholamreza, 2016. "Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers," Energy, Elsevier, vol. 96(C), pages 355-371.
    3. Liang, Jialin & Gan, Yunhua & Tan, Meixian & Li, Yong, 2020. "Multilayer electrochemical-thermal coupled modeling of unbalanced discharging in a serially connected lithium-ion battery module," Energy, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Astaneh, Majid & Andric, Jelena & Löfdahl, Lennart & Stopp, Peter, 2022. "Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications," Energy, Elsevier, vol. 239(PB).
    2. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    4. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    5. Zhang, Furen & Lu, Fu & Liang, Beibei & Zhu, Yilin & Gou, Huan & Xiao, Kang & He, Yanxiao, 2023. "Thermal performance analysis of a new type of branch-fin enhanced battery thermal management PCM module," Renewable Energy, Elsevier, vol. 206(C), pages 1049-1063.
    6. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    7. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.
    9. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    10. Wang, Tingyu & Jiang, Yan & Huang, Jin & Wang, Shuangfeng, 2018. "High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network," Applied Energy, Elsevier, vol. 218(C), pages 184-191.
    11. Pan, Minqiang & Lai, Wenlin, 2017. "Cutting copper fiber/paraffin composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery," Renewable Energy, Elsevier, vol. 114(PB), pages 408-422.
    12. Guo, Shanshan & Yang, Ruixin & Shen, Weixiang & Liu, Yongsheng & Guo, Shenggang, 2022. "DC-AC hybrid rapid heating method for lithium-ion batteries at high state of charge operated from low temperatures," Energy, Elsevier, vol. 238(PB).
    13. Xingxing Wang & Shengren Liu & Yujie Zhang & Shuaishuai Lv & Hongjun Ni & Yelin Deng & Yinnan Yuan, 2022. "A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System," Energies, MDPI, vol. 15(6), pages 1-29, March.
    14. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Kim, Hong-Keun & Lee, Kyu-Jin, 2023. "Use of a multiphysics model to investigate the performance and degradation of lithium-ion battery packs with different electrical configurations," Energy, Elsevier, vol. 262(PB).
    16. Chen, Haosen & Fan, Jinbao & Zhang, Mingliang & Feng, Xiaolong & Zhong, Ximing & He, Jianchao & Ai, Shigang, 2023. "Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    17. Mohammad Al-Amin & Anup Barai & T.R. Ashwin & James Marco, 2021. "An Insight to the Degradation Behaviour of the Parallel Connected Lithium-Ion Battery Cells," Energies, MDPI, vol. 14(16), pages 1-18, August.
    18. Li, Da & Zhang, Lei & Zhang, Zhaosheng & Liu, Peng & Deng, Junjun & Wang, Qiushi & Wang, Zhenpo, 2023. "Battery safety issue detection in real-world electric vehicles by integrated modeling and voltage abnormality," Energy, Elsevier, vol. 284(C).
    19. Ruheng Lin & Jiekai Xie & Rui Liang & Xinxi Li & Guoqing Zhang & Binbin Li, 2022. "Experiments and Simulation on the Performance of a Liquid-Cooling Thermal Management System including Composite Silica Gel and Mini-Channel Cold Plates for a Battery Module," Energies, MDPI, vol. 15(23), pages 1-17, December.
    20. Ma, Jing & Sun, Yongfei & Zhang, Shiang, 2023. "Experimental investigation on energy consumption of power battery integrated thermal management system," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7897-:d:952143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.