IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i1p286-d716115.html
   My bibliography  Save this article

Energy Savings Analysis for Operation of Steam Cushion System for Sensible Thermal Energy Storages

Author

Listed:
  • Ryszard Zwierzchowski

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland)

  • Olgierd Niemyjski

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland)

  • Marcin Wołowicz

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland)

Abstract

The paper presents an analytical discussion of how to improve the energy efficiency of the steam cushion system operation for a Thermal Energy Storage (TES) tank. The EU’s green deal 2050 target policy requires an increase in the energy efficiency of energy production and use, as well as an increase in the share of renewable energy in the overall energy production balance. The use of energy-efficient TES is considered as one of the most important technologies to achieve the objectives of this EU policy. The analyses presented in the paper of energy-efficient operation of steam cushion (SC) systems were carried out by using operational data received from three District Heating Systems (DHSs) that supply heat and electricity to one of the largest cities in Poland and are equipped with the TES systems. These three analyzed TESs differ in capacities from 12,800 to 30,400 m 3 , tank diameters from 21 to 30 m and shell height from 37 to 48.2 m. The main purpose of using a steam cushion system in the TES tank is to protect the water stored in it against the absorption of oxygen from the surrounding atmospheric air through the surge chamber and safety valves located on the roof of the tank. The technical solutions presented here for the upper orifice for charging and discharging hot water into/from the tank and the suction pipe for circulating water allow to us achieve significant energy savings in the steam cushion systems. Both the upper orifice and the end of suction pipe are movable through the use of pontoons. Thanks to the use of this technical solution, a stable insulating water layer is created above the upper orifice in the upper part of the TES tank, where convective and turbulent transport of heat from the steam cushion space to the hot water stored in the tank is significantly limited. Ultimately, this reduces the heat flux by approximately 90% when compared to the classic technical solutions of steam cushion systems in TES tanks, i.e., for the upper orifice and circulation water pipe. The simplified analysis presented in the paper and comparison of its results with experimental data for heat flow from the steam cushion space to hot water stored in the upper part of the TES tank fully confirms the usefulness of the heat-flow models used.

Suggested Citation

  • Ryszard Zwierzchowski & Olgierd Niemyjski & Marcin Wołowicz, 2022. "Energy Savings Analysis for Operation of Steam Cushion System for Sensible Thermal Energy Storages," Energies, MDPI, vol. 15(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:286-:d:716115
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Bofeng & Xue, Song & Li, Yuanfei & Duan, Jinhui & Zeng, Ming, 2016. "Gas-fired combined cooling, heating and power (CCHP) in Beijing: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 118-131.
    2. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Vakulchuk, Roman & Overland, Indra & Scholten, Daniel, 2020. "Renewable energy and geopolitics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    4. Zhang, Qi & Gao, Jintong & Wang, Yujie & Wang, Lin & Yu, Zaihai & Song, Dayong, 2019. "Exergy-based analysis combined with LCA for waste heat recovery in coal-fired CHP plants," Energy, Elsevier, vol. 169(C), pages 247-262.
    5. Jaehyung An & Alexey Mikhaylov & Sang-Uk Jung, 2020. "The Strategy of South Korea in the Global Oil Market," Energies, MDPI, vol. 13(10), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gavin Bridge & Ludger Gailing, 2020. "New energy spaces: Towards a geographical political economy of energy transition," Environment and Planning A, , vol. 52(6), pages 1037-1050, September.
    2. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Monica Aureliana Petcu & Eduard Madalin Dinu & Irina Daniela Cismasu & Raluca Andreea Popescu-Predulescu, 2023. "The Analysis of the Impact of Energy and Environmental Policies of the European Union on the Economic Performance of Companies. Case Study in the Transport Sector," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 362-362, April.
    4. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    5. Ilyas Khurshid & Imran Afgan, 2021. "Investigation of Water Composition on Formation Damage and Related Energy Recovery from Geothermal Reservoirs: Geochemical and Geomechanics Insights," Energies, MDPI, vol. 14(21), pages 1-21, November.
    6. Jianfei Shen & Fengyun Li & Di Shi & Hongze Li & Xinhua Yu, 2018. "Factors Affecting the Economics of Distributed Natural Gas-Combined Cooling, Heating and Power Systems in China: A Systematic Analysis Based on the Integrated Decision Making Trial and Evaluation Labo," Energies, MDPI, vol. 11(9), pages 1-28, September.
    7. André Månberger, 2021. "Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources," Biophysical Economics and Resource Quality, Springer, vol. 6(2), pages 1-15, June.
    8. Lee, Chien-Chiang & Wang, Fuhao & Chang, Yu-Fang, 2023. "Does green finance promote renewable energy? Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    9. Zhoufu Yan & Shuntian Sui & Fangwei Wu & Li Cao, 2023. "The Impact of Outward Foreign Direct Investment on Product Quality and Export: Evidence from China," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    10. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    11. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Liu, Hongzhao & Wang, Yuzhang & Yu, Tao & Liu, Hecong & Cai, Weiwei & Weng, Shilie, 2020. "Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1299-1311.
    13. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    14. Sweidan, Osama D., 2021. "Is the geopolitical risk an incentive or obstacle to renewable energy deployment? Evidence from a panel analysis," Renewable Energy, Elsevier, vol. 178(C), pages 377-384.
    15. Pavel Baboshkin, 2020. "Strategic Energy Partnership between Russia and China," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 158-163.
    16. Taner, Tolga & Sivrioglu, Mecit, 2017. "A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 722-730.
    17. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Mišík, Matúš, 2022. "The EU needs to improve its external energy security," Energy Policy, Elsevier, vol. 165(C).
    19. Ioana Gutu & Camelia Nicoleta Medeleanu, 2023. "Assessing Teleworkforce and Electronic Leadership Favorable for an Online Workforce Sustainability Framework by Using PLS SEM," Sustainability, MDPI, vol. 15(18), pages 1-32, September.
    20. Chen, Yuzhu & Hua, Huilian & Xu, Jinzhao & Yun, Zhonghua & Wang, Jun & Lund, Peter D., 2022. "Techno-economic cost assessment of a combined cooling heating and power system coupled to organic Rankine cycle with life cycle method," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:286-:d:716115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.