IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6457-d906328.html
   My bibliography  Save this article

Numerical Study on Behaviors of the Sloshing Liquid Oxygen Tanks

Author

Listed:
  • Hanyue Zhang

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Hong Chen

    (State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China)

  • Xu Gao

    (State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China)

  • Xi Pan

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Qingmiao Huang

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Junlong Xie

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jianye Chen

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

In marine storage and transportation, the sloshing of liquid oxygen disturbs the thermodynamic equilibrium and induces stress on tank walls. Numerous problems are associated with the sloshing mechanism and demand a detailed investigation. In this study, a numerical model is developed by coupling the Eulerian framework and the algebraic interface area density (AIAD) method while considering the interphase drag force to investigate the thermal behavior of sloshing liquid oxygen. The effect of the sloshing frequency on the evaporation performance of liquid oxygen is studied. Moreover, anti-sloshing is conducted by employing a T-shaped baffle. The results show that the sloshing induced a vapor explosion phenomenon due to the invalidation of the surface impedance and thermal destratification to enhance free convection, resulting in rapid depressurization and increased evaporation loss. In addition, maximum evaporation loss occurred under the vapor–liquid coupling excitation condition. The T-shaped baffle has an excellent anti-sloshing effect because of the generating tip vortices and the enhanced shearing effect of the walls, which are regarded as motion damping factors.

Suggested Citation

  • Hanyue Zhang & Hong Chen & Xu Gao & Xi Pan & Qingmiao Huang & Junlong Xie & Jianye Chen, 2022. "Numerical Study on Behaviors of the Sloshing Liquid Oxygen Tanks," Energies, MDPI, vol. 15(17), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6457-:d:906328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Sixian & Ju, Yonglin, 2021. "Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation," Energy, Elsevier, vol. 223(C).
    2. Erlend Liavåg Grotle & Vilmar Æsøy, 2017. "Numerical Simulations of Sloshing and the Thermodynamic Response Due to Mixing," Energies, MDPI, vol. 10(9), pages 1-20, September.
    3. Liu, Zhan & Li, Yanzhong, 2019. "Thermal physical performance in liquid hydrogen tank under constant wall temperature," Renewable Energy, Elsevier, vol. 130(C), pages 601-612.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessie R. Smith & Savvas Gkantonas & Epaminondas Mastorakos, 2022. "Modelling of Boil-Off and Sloshing Relevant to Future Liquid Hydrogen Carriers," Energies, MDPI, vol. 15(6), pages 1-32, March.
    2. Fan, Yading & Chen, Tairan & Liang, Wendong & Wang, Guoyu & Huang, Biao, 2022. "Numerical and theoretical investigations of the cavitation performance and instability for the cryogenic inducer," Renewable Energy, Elsevier, vol. 184(C), pages 291-305.
    3. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    4. Cao, Yan & Mohammadian, Mehrnoush & Pirouzfar, Vahid & Su, Chia-Hung & Khan, Afrasyab, 2021. "Break Even Point analysis of liquefied natural gas process and optimization of its refrigeration cycles with technical and economic considerations," Energy, Elsevier, vol. 237(C).
    5. Daehoon Kang & Sungho Yun & Bo-kyong Kim & Jaewon Kim & Gildong Kim & Hyunbae Lee & Sangyeol Choi, 2022. "Numerical Investigation of the Initial Charging Process of the Liquid Hydrogen Tank for Vehicles," Energies, MDPI, vol. 16(1), pages 1-16, December.
    6. Wang, Yuan & Ren, Jing-Jie & Bi, Ming-Shu, 2023. "Analysis on the heat transfer performance of supercritical liquified natural gas in horizontal tubes during regasification process," Energy, Elsevier, vol. 262(PA).
    7. Hossein Asgharian & Florin Iov & Samuel Simon Araya & Thomas Helmer Pedersen & Mads Pagh Nielsen & Ehsan Baniasadi & Vincenzo Liso, 2023. "A Review on Process Modeling and Simulation of Cryogenic Carbon Capture for Post-Combustion Treatment," Energies, MDPI, vol. 16(4), pages 1-35, February.
    8. Duan, Zhongdi & Zhu, Yifeng & Wang, Chenbiao & Yuan, Yuchao & Xue, Hongxiang & Tang, Wenyong, 2023. "Numerical and theoretical prediction of the thermodynamic response in marine LNG fuel tanks under sloshing conditions," Energy, Elsevier, vol. 270(C).
    9. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    10. Golrokh Sani, Ahmad & Najafi, Hamidreza & Azimi, Seyedeh Shakiba, 2022. "Dynamic thermal modeling of the refrigerated liquified CO2 tanker in carbon capture, utilization, and storage chain: A truck transport case study," Applied Energy, Elsevier, vol. 326(C).
    11. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    12. Wu, Sixian & Ju, Yonglin, 2021. "Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation," Energy, Elsevier, vol. 223(C).
    13. Peng Yu & Yuanchao Yin & Qianjin Yue & Shanghua Wu, 2022. "Experimental Study of Ship Motion Effect on Pressurization and Holding Time of Tank Containers during Marine Transportation," Sustainability, MDPI, vol. 14(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6457-:d:906328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.