IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1338-d110970.html
   My bibliography  Save this article

Numerical Simulations of Sloshing and the Thermodynamic Response Due to Mixing

Author

Listed:
  • Erlend Liavåg Grotle

    (Department of Ocean Operations and Civil Engineering, Faculty of Engineering Science, Norwegian University of Science and Engineering, Larsgårdvegen 2, 6009 Ålesund, Norway)

  • Vilmar Æsøy

    (Department of Ocean Operations and Civil Engineering, Faculty of Engineering Science, Norwegian University of Science and Engineering, Larsgårdvegen 2, 6009 Ålesund, Norway)

Abstract

In this paper, we apply computational fluid dynamics (CFD) to study the thermodynamic response enhanced by sloshing inside liquefied natural gas (LNG) fuel tanks. An existing numerical solver provided by OpenFOAM is used to simulate sloshing in a model scaled tank of similar form to an LNG fuel tank. The interface area has been estimated for different sloshing regimes on three different numerical grids representing the tank in 3D. Estimating the interface area is done by performing a grid-independence study. In the most severe sloshing conditions, convergence is not achieved. By combining the results from experiments and CFD, it is found that the interface area and the condensation mass flow rate are in phase for the most severe sloshing condition. The existing CFD solver is modified to determine the pressure drop. The simulation results are compared to the experimental data, and the results are acceptable and thereby show a potential in applying CFD to predict the thermodynamic response due to sloshing. By plotting the temperature contours, indications are found that the exchange of cold bulk and saturated liquid due to sloshing has a significant influence on the thermodynamic response.

Suggested Citation

  • Erlend Liavåg Grotle & Vilmar Æsøy, 2017. "Numerical Simulations of Sloshing and the Thermodynamic Response Due to Mixing," Energies, MDPI, vol. 10(9), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1338-:d:110970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anastasios Georgoulas & Manolia Andredaki & Marco Marengo, 2017. "An Enhanced VOF Method Coupled with Heat Transfer and Phase Change to Characterise Bubble Detachment in Saturated Pool Boiling," Energies, MDPI, vol. 10(3), pages 1-35, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jessie R. Smith & Savvas Gkantonas & Epaminondas Mastorakos, 2022. "Modelling of Boil-Off and Sloshing Relevant to Future Liquid Hydrogen Carriers," Energies, MDPI, vol. 15(6), pages 1-32, March.
    2. Wu, Sixian & Ju, Yonglin, 2021. "Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation," Energy, Elsevier, vol. 223(C).
    3. Hanyue Zhang & Hong Chen & Xu Gao & Xi Pan & Qingmiao Huang & Junlong Xie & Jianye Chen, 2022. "Numerical Study on Behaviors of the Sloshing Liquid Oxygen Tanks," Energies, MDPI, vol. 15(17), pages 1-17, September.
    4. Peng Yu & Yuanchao Yin & Qianjin Yue & Shanghua Wu, 2022. "Experimental Study of Ship Motion Effect on Pressurization and Holding Time of Tank Containers during Marine Transportation," Sustainability, MDPI, vol. 14(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Vontas & Manolia Andredaki & Anastasios Georgoulas & Nicolas Miché & Marco Marengo, 2021. "The Effect of Hydraulic Diameter on Flow Boiling within Single Rectangular Microchannels and Comparison of Heat Sink Configuration of a Single and Multiple Microchannels," Energies, MDPI, vol. 14(20), pages 1-23, October.
    2. Mohd Danish & Mohammed K. Al Mesfer & Khursheed B. Ansari & Mudassir Hasan & Abdelfattah Amari & Babar Azeem, 2021. "Predicting Conduction Heat Flux through Macrolayer in Nucleate Pool Boiling," Energies, MDPI, vol. 14(13), pages 1-13, June.
    3. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    4. Konstantinos Vontas & Marco Pavarani & Nicolas Miché & Marco Marengo & Anastasios Georgoulas, 2023. "Validation of the Eulerian–Eulerian Two-Fluid Method and the RPI Wall Partitioning Model Predictions in OpenFOAM with Respect to the Flow Boiling Characteristics within Conventional Tubes and Micro-Ch," Energies, MDPI, vol. 16(13), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1338-:d:110970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.