IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6304-d900995.html
   My bibliography  Save this article

Study on the Long-Distance Gas Pre-Drainage Technology in the Heading Face by Directional Long Borehole

Author

Listed:
  • Yunbing Hou

    (School of Energy and Mining Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China)

  • Junqi Cui

    (School of Energy and Mining Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China)

  • Ruipeng Liu

    (School of Energy and Mining Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China)

Abstract

Gas control in the heading face of a coal roadway is an important and difficult point in coal mining in China. On the basis of analyzing the disadvantages of high gas control cost and long drainage period in the existing mine heading face, a long-distance pre-drainage method of long-distance drilling is proposed to control the gas in the heading face so as to improve the tunneling speed. Applied to the engineering geological conditions of Changcun coal mine, the technology is studied in detail. First, a gas migration model considering permeability changing with time is established, and the model is put into the numerical simulation software to study the variation law of permeability and gas pressure under the conditions of single borehole and multi-borehole drainage. The results show that with the increase of drainage time, the permeability around the borehole increases gradually, the gas pressure decreases gradually, and the permeability at the borehole boundary increases the most, reaching 1.2 times the initial permeability. In the process of multi-borehole drainage, there will be mutual influence between boreholes, but with the increase of borehole spacing, the degree of this influence gradually decreases. Second, according to the results of numerical simulation, a reasonable gas drainage scheme is designed and applied in the field. The field application shows that the technology has a good gas drainage effect, the gas drainage concentration and flow are at a high level for a long time, the drilling cuttings quantity is always lower than the critical value, and the excavation length of roadway increases by more than 50 m per month. These results indicate that this technology is a promising method to realize the safe and rapid excavation of a mine coal roadway.

Suggested Citation

  • Yunbing Hou & Junqi Cui & Ruipeng Liu, 2022. "Study on the Long-Distance Gas Pre-Drainage Technology in the Heading Face by Directional Long Borehole," Energies, MDPI, vol. 15(17), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6304-:d:900995
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shouqing Lu & Yuanping Cheng & Jinmin Ma & Yuebing Zhang, 2014. "Application of in-seam directional drilling technology for gas drainage with benefits to gas outburst control and greenhouse gas reductions in Daning coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1419-1437, September.
    2. Gang Wang & Cheng Fan & Hao Xu & Xuelin Liu & Rui Wang, 2018. "Determination of Long Horizontal Borehole Height in Roofs and Its Application to Gas Drainage," Energies, MDPI, vol. 11(10), pages 1-18, October.
    3. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Shizhe Li & Zhaofeng Wang, 2023. "Study on the Coupling Effect of Stress Field and Gas Field in Surrounding Rock of Stope and Gas Migration Law," Energies, MDPI, vol. 16(18), pages 1-20, September.
    3. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    4. Jing Han Siow & Muhammad Roil Bilad & Wahyu Caesarendra & Jia Jia Leam & Mohammad Azmi Bustam & Nonni Soraya Sambudi & Yusuf Wibisono & Teuku Meurah Indra Mahlia, 2021. "Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction," Energies, MDPI, vol. 14(19), pages 1-16, October.
    5. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    6. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    7. Delsoto, G.S. & Battisti, F.G. & da Silva, A.K., 2023. "Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 336-356.
    8. Emily J. Kothe & Mathew Ling & Barbara A. Mullan & Joshua J. Rhee & Anna Klas, 2023. "Increasing intention to reduce fossil fuel use: a protection motivation theory-based experimental study," Climatic Change, Springer, vol. 176(3), pages 1-20, March.
    9. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    10. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    11. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    12. Yue, Xiufeng & Patankar, Neha & Decarolis, Joseph & Chiodi, Alessandro & Rogan, Fionn & Deane, J.P. & O’Gallachoir, Brian, 2020. "Least cost energy system pathways towards 100% renewable energy in Ireland by 2050," Energy, Elsevier, vol. 207(C).
    13. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
    14. Minglu Ma & Min Su & Shuyu Li & Feng Jiang & Rongrong Li, 2018. "Predicting Coal Consumption in South Africa Based on Linear (Metabolic Grey Model), Nonlinear (Non-Linear Grey Model), and Combined (Metabolic Grey Model-Autoregressive Integrated Moving Average Model," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    15. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2017. "Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies," Energy, Elsevier, vol. 131(C), pages 230-238.
    16. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    17. Boris V. Malozyomov & Vladimir Ivanovich Golik & Vladimir Brigida & Vladislav V. Kukartsev & Yadviga A. Tynchenko & Andrey A. Boyko & Sergey V. Tynchenko, 2023. "Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors," Energies, MDPI, vol. 16(11), pages 1-16, May.
    18. Amandeep Singh Oberoi & Parag Nijhawan & Parminder Singh, 2018. "A Novel Electrochemical Hydrogen Storage-Based Proton Battery for Renewable Energy Storage," Energies, MDPI, vol. 12(1), pages 1-15, December.
    19. Zbigniew Bohdanowicz & Beata Łopaciuk-Gonczaryk & Jarosław Kowalski & Cezary Biele, 2021. "Households’ Electrical Energy Conservation and Management: An Ecological Break-Through, or the Same Old Consumption-Growth Path?," Energies, MDPI, vol. 14(20), pages 1-21, October.
    20. Emily Grubert, 2023. "Yellow, red, and brown energy: leveraging water footprinting concepts for decarbonizing energy systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7239-7260, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6304-:d:900995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.