IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2647-d173618.html
   My bibliography  Save this article

Determination of Long Horizontal Borehole Height in Roofs and Its Application to Gas Drainage

Author

Listed:
  • Gang Wang

    (Shandong University of Science and Technology, Mine Disaster Prevention and Control-Ministry of State Key Laboratory Breeding Base, Qingdao 266590, China
    Shandong University of Science and Technology, College of Mining and Safety Engineering, Qingdao 266590, China)

  • Cheng Fan

    (Shandong University of Science and Technology, College of Mining and Safety Engineering, Qingdao 266590, China)

  • Hao Xu

    (Shandong University of Science and Technology, College of Mining and Safety Engineering, Qingdao 266590, China)

  • Xuelin Liu

    (Shandong University of Science and Technology, College of Mining and Safety Engineering, Qingdao 266590, China)

  • Rui Wang

    (College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, China)

Abstract

Accurately determining the height of the gas-guiding fracture zone in the overlying strata of the goaf is the key to find the height of the long horizontal borehole in the roof. In order to determine the height, in this study we chose the 6306 working face of Tangkou Coal Mine in China as a research example and used both the theoretical model and discrete element method (DEM) numerical simulation to find the height of the gas-guiding fracture zone and applied the height to drill a long horizontal borehole in the roof of the 6303 working face. Furthermore, the borehole was utilized to deep into the roof for coalbed methane drainage and the results were compared with conventional gas drainage measures from other aspects. The height of the gas-guiding fracture zone was found to be 48.57 m in theoretical model based on the bulk coefficient and the void ratio and to be 51.19 m in the DEM numerical simulation according to the temporal and spatial variation characteristics of porosity. Taking both the results of theoretical analysis and numerical simulation into consideration, we determined that gas-guiding fracture zone is 49.88 m high and applied it to drill a long horizontal borehole deep into the roof in the 6303 working face field. Compared with conventional gas drainage measures, we found that the long horizontal borehole has the high stability, high efficiency and strong adaptability for methane drainage.

Suggested Citation

  • Gang Wang & Cheng Fan & Hao Xu & Xuelin Liu & Rui Wang, 2018. "Determination of Long Horizontal Borehole Height in Roofs and Its Application to Gas Drainage," Energies, MDPI, vol. 11(10), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2647-:d:173618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kroepsch, Adrianne C., 2018. "Horizontal drilling, changing patterns of extraction, and piecemeal participation: Urban hydrocarbon governance in Colorado," Energy Policy, Elsevier, vol. 120(C), pages 469-480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shizhe Li & Zhaofeng Wang, 2023. "Study on the Coupling Effect of Stress Field and Gas Field in Surrounding Rock of Stope and Gas Migration Law," Energies, MDPI, vol. 16(18), pages 1-20, September.
    2. Boris V. Malozyomov & Vladimir Ivanovich Golik & Vladimir Brigida & Vladislav V. Kukartsev & Yadviga A. Tynchenko & Andrey A. Boyko & Sergey V. Tynchenko, 2023. "Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors," Energies, MDPI, vol. 16(11), pages 1-16, May.
    3. Yunbing Hou & Junqi Cui & Ruipeng Liu, 2022. "Study on the Long-Distance Gas Pre-Drainage Technology in the Heading Face by Directional Long Borehole," Energies, MDPI, vol. 15(17), pages 1-22, August.
    4. Fan Zhang & Guangsen Wang & Binbin Wang, 2023. "Study and Application of High-Level Directional Extraction Borehole Based on Mining Fracture Evolution Law of Overburden Strata," Sustainability, MDPI, vol. 15(3), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ericson, Sean J. & Kaffine, Daniel T. & Maniloff, Peter, 2020. "Costs of increasing oil and gas setbacks are initially modest but rise sharply," Energy Policy, Elsevier, vol. 146(C).
    2. Jeffrey Rous & Vicki Oppenheim & Myungsup Kim & Matthew Fry & Chetan Tiwari & Murray Rice, 2020. "Evaluating determinants of shale gas well locations in an urban setting," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 65(3), pages 645-671, December.
    3. Mazen Hafez & Mahyar Ghazvini & Myeongsub Kim, 2022. "On the Stability of Particle–Particle Interaction during Gravitational Settling," Energies, MDPI, vol. 15(22), pages 1-14, November.
    4. Michanowicz, Drew R. & Buonocore, Jonathan J. & Konschnik, Katherine E. & Goho, Shaun A. & Bernstein, Aaron S., 2021. "The effect of Pennsylvania's 500 ft surface setback regulation on siting unconventional natural gas wells near buildings: An interrupted time-series analysis," Energy Policy, Elsevier, vol. 154(C).
    5. Fisk, Jonathan M. & Good, A.J., 2019. "Information booms and busts: Examining oil and gas disclosure policies across the states," Energy Policy, Elsevier, vol. 127(C), pages 374-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2647-:d:173618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.