IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6296-d900643.html
   My bibliography  Save this article

Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids

Author

Listed:
  • Wojciech Cieslik

    (Department of Combustion Engines and Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Filip Szwajca

    (Department of Combustion Engines and Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Sławomir Rosolski

    (Urban Planning and Heritage Conservation, Institute of Architecture, Faculty of Architecture, Poznan University of Technology, 60-965 Poznan, Poland)

  • Michał Rutkowski

    (Urban Planning and Heritage Conservation, Institute of Architecture, Faculty of Architecture, Poznan University of Technology, 60-965 Poznan, Poland)

  • Katarzyna Pietrzak

    (Department of Combustion Engines and Powertrains, Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Jakub Wójtowicz

    (Urban Planning and Heritage Conservation, Institute of Architecture, Faculty of Architecture, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

The growing need for electric energy is forcing the construction industry to greater integrate energy production systems based on renewable energy sources. The energy ought to be used not only to support functions of the building but also to charge electric vehicles, whose number has been increasing for the last few years. However, implementation of RES (Renewable Energy Sources) systems in already existing buildings is problematic. Basing on an example of a historical building, the article presents the conversion of a facility into a nearly zero-energy building, where energy surplus may be used to charge EVs (Electric Vehicles). Interdisciplinary research describes energy consumption of the EV in real driving conditions, taking into consideration changing weather conditions and an option of energy being produced by buildings operating in an urban agglomeration: it stipulates the time needed to charge the vehicle, depending on the charging We removed dot, according to email in submitting system, please confirm.method, as well as an energy potential of adapting the solution in selected periods of building operation. The summary presents how electromobility can be supported by the construction industry.

Suggested Citation

  • Wojciech Cieslik & Filip Szwajca & Sławomir Rosolski & Michał Rutkowski & Katarzyna Pietrzak & Jakub Wójtowicz, 2022. "Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids," Energies, MDPI, vol. 15(17), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6296-:d:900643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martínez-Molina, Antonio & Tort-Ausina, Isabel & Cho, Soolyeon & Vivancos, José-Luis, 2016. "Energy efficiency and thermal comfort in historic buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 70-85.
    2. Jacek Pielecha & Kinga Skobiej & Karolina Kurtyka, 2020. "Exhaust Emissions and Energy Consumption Analysis of Conventional, Hybrid, and Electric Vehicles in Real Driving Cycles," Energies, MDPI, vol. 13(23), pages 1-21, December.
    3. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    4. Wojciech Cieslik & Filip Szwajca & Jedrzej Zawartowski & Katarzyna Pietrzak & Slawomir Rosolski & Kamil Szkarlat & Michal Rutkowski, 2021. "Capabilities of Nearly Zero Energy Building (nZEB) Electricity Generation to Charge Electric Vehicle (EV) Operating in Real Driving Conditions (RDC)," Energies, MDPI, vol. 14(22), pages 1-22, November.
    5. Deshmukh, Swaraj Sanjay & Pearce, Joshua M., 2021. "Electric vehicle charging potential from retail parking lot solar photovoltaic awnings," Renewable Energy, Elsevier, vol. 169(C), pages 608-617.
    6. Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2022. "Dependence of spectral factor on angle of incidence for monocrystalline silicon based photovoltaic solar panel," Renewable Energy, Elsevier, vol. 184(C), pages 820-829.
    7. Saad Odeh & Tri Hieu Nguyen, 2021. "Assessment Method to Identify the Potential of Rooftop PV Systems in the Residential Districts," Energies, MDPI, vol. 14(14), pages 1-11, July.
    8. Anatole Desreveaux & Alain Bouscayrol & Elodie Castex & Rochdi Trigui & Eric Hittinger & Gabriel-Mihai Sirbu, 2020. "Annual Variation in Energy Consumption of an Electric Vehicle Used for Commuting," Energies, MDPI, vol. 13(18), pages 1-15, September.
    9. Ferri, Carlotta & Ziar, Hesan & Nguyen, Thien Tin & van Lint, Hans & Zeman, Miro & Isabella, Olindo, 2022. "Mapping the photovoltaic potential of the roads including the effect of traffic," Renewable Energy, Elsevier, vol. 182(C), pages 427-442.
    10. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    11. Higashitani, Takuya & Ikegami, Takashi & Uemichi, Akane & Akisawa, Atsushi, 2021. "Evaluation of residential power supply by photovoltaics and electric vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 745-756.
    12. Tomasz Matyja & Andrzej Kubik & Zbigniew Stanik, 2022. "Possibility to Use Professional Bicycle Computers for the Scientific Evaluation of Electric Bikes: Trajectory, Distance, and Slope Data," Energies, MDPI, vol. 15(3), pages 1-18, January.
    13. Abdulsalam S. Alghamdi, 2019. "Potential for Rooftop-Mounted PV Power Generation to Meet Domestic Electrical Demand in Saudi Arabia: Case Study of a Villa in Jeddah," Energies, MDPI, vol. 12(23), pages 1-29, November.
    14. Nasser Alqahtani & Nazmiye Balta-Ozkan, 2021. "Assessment of Rooftop Solar Power Generation to Meet Residential Loads in the City of Neom, Saudi Arabia," Energies, MDPI, vol. 14(13), pages 1-21, June.
    15. Wojciech Cieslik & Filip Szwajca & Wojciech Golimowski & Andrew Berger, 2021. "Experimental Analysis of Residential Photovoltaic (PV) and Electric Vehicle (EV) Systems in Terms of Annual Energy Utilization," Energies, MDPI, vol. 14(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Turoń, 2022. "Multi-Criteria Decision Analysis during Selection of Vehicles for Car-Sharing Services—Regular Users’ Expectations," Energies, MDPI, vol. 15(19), pages 1-15, October.
    2. Katarzyna Turoń, 2022. "Selection of Car Models with a Classic and Alternative Drive to the Car-Sharing Services from the System’s Rare Users Perspective," Energies, MDPI, vol. 15(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Zhang, Tao & Li, Shaojie & Yang, Zhi & Liu, Xiaohua & Jiang, Yi, 2023. "Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy," Applied Energy, Elsevier, vol. 341(C).
    2. Filipe Quintal & Daniel Garigali & Dino Vasconcelos & Jonathan Cavaleiro & Wilson Santos & Lucas Pereira, 2021. "Energy Monitoring in the Wild: Platform Development and Lessons Learned from a Real-World Demonstrator," Energies, MDPI, vol. 14(18), pages 1-15, September.
    3. Sebastian Grzesiak & Adam Sulich, 2022. "Car Engines Comparative Analysis: Sustainable Approach," Energies, MDPI, vol. 15(14), pages 1-15, July.
    4. Jacek Pielecha & Kinga Skobiej & Przemyslaw Kubiak & Marek Wozniak & Krzysztof Siczek, 2022. "Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles," Energies, MDPI, vol. 15(7), pages 1-38, March.
    5. Kinga Skobiej & Jacek Pielecha, 2021. "Plug-in Hybrid Ecological Category in Real Driving Emissions," Energies, MDPI, vol. 14(8), pages 1-25, April.
    6. Andrzej Kubik, 2022. "The Energy Consumption of Electric Scooters Used in the Polish Shared Mobility Market," Energies, MDPI, vol. 15(21), pages 1-15, November.
    7. Ana Carolina Kulik & Édwin Augusto Tonolo & Alberto Kisner Scortegagna & Jardel Eugênio da Silva & Jair Urbanetz Junior, 2021. "Analysis of Scenarios for the Insertion of Electric Vehicles in Conjunction with a Solar Carport in the City of Curitiba, Paraná—Brazil," Energies, MDPI, vol. 14(16), pages 1-15, August.
    8. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    9. Mengjin Hu & Xiaoyang Song & Zhongxu Bao & Zhao Liu & Mengju Wei & Yaohuan Huang, 2022. "Evaluation of the Economic Potential of Photovoltaic Power Generation in Road Spaces," Energies, MDPI, vol. 15(17), pages 1-16, September.
    10. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    11. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    12. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.
    13. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    14. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    15. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    16. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    17. Manfred Dollinger & Gerhard Fischerauer, 2023. "Physics-Based Prediction for the Consumption and Emissions of Passenger Vehicles and Light Trucks up to 2050," Energies, MDPI, vol. 16(8), pages 1-29, April.
    18. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "Validation of a Simulation-Based Pre-Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African Shopping Centres," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    19. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    20. Cohen, Jed & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2019. "Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles," Energy Economics, Elsevier, vol. 83(C), pages 567-577.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6296-:d:900643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.