IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5972-d891087.html
   My bibliography  Save this article

Underground Storage of Green Hydrogen—Boundary Conditions for Compressor Systems

Author

Listed:
  • Heinz Bekebrok

    (German Aerospace Center, Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

  • Hendrik Langnickel

    (German Aerospace Center, Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

  • Adam Pluta

    (German Aerospace Center, Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

  • Marco Zobel

    (German Aerospace Center, Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

  • Alexander Dyck

    (German Aerospace Center, Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

Abstract

The large-scale storage of hydrogen in salt caverns, modelled on today’s natural gas storage, is a promising approach to storing renewable energy over a large power range and for the required time period. An essential subsystem of the overall gas storage is the surface facility and, in particular, the compressor system. The future design of compressor systems for hydrogen storage strongly depends on the respective boundary conditions. Therefore, this work analyses the requirements of compressor systems for cavern storage facilities for the storage of green hydrogen, i.e., hydrogen produced from renewable energy sources, using the example of Lower Saxony in Germany. In this course, a hydrogen storage demand profile of one year is developed in hourly resolution from feed-in time series of renewable energy sources. The injection profile relevant for compressor operation is compared with current natural gas injection operation modes.

Suggested Citation

  • Heinz Bekebrok & Hendrik Langnickel & Adam Pluta & Marco Zobel & Alexander Dyck, 2022. "Underground Storage of Green Hydrogen—Boundary Conditions for Compressor Systems," Energies, MDPI, vol. 15(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5972-:d:891087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    2. Gils, Hans Christian & Gardian, Hedda & Schmugge, Jens, 2021. "Interaction of hydrogen infrastructures with other sector coupling options towards a zero-emission energy system in Germany," Renewable Energy, Elsevier, vol. 180(C), pages 140-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    2. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    4. Herc, Luka & Pfeifer, Antun & Duić, Neven, 2022. "Optimization of the possible pathways for gradual energy system decarbonization," Renewable Energy, Elsevier, vol. 193(C), pages 617-633.
    5. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Pombo, Daniel Vázquez & Martinez-Rico, Jon & Spataru, Sergiu V. & Bindner, Henrik W. & Sørensen, Poul E., 2023. "Decarbonizing energy islands with flexibility-enabling planning: The case of Santiago, Cape Verde," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    7. Ruhnau, Oliver & Schiele, Johanna, 2023. "Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions," Energy Policy, Elsevier, vol. 182(C).
    8. Johannes Brauer & Manuel Villavicencio & Johannes Trüby, 2022. "Green hydrogen – How grey can it be?," RSCAS Working Papers 2022/44, European University Institute.
    9. Schlund, David & Theile, Philipp, 2021. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," EWI Working Papers 2021-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    10. Grzegorz Zych & Jakub Bronicki & Marzena Czarnecka & Grzegorz Kinelski & Jacek Kamiński, 2023. "The Cost of Using Gas as a Transition Fuel in the Transition to Low-Carbon Energy: The Case Study of Poland and Selected European Countries," Energies, MDPI, vol. 16(2), pages 1-13, January.
    11. Gea-Bermúdez, Juan & Bramstoft, Rasmus & Koivisto, Matti & Kitzing, Lena & Ramos, Andrés, 2023. "Going offshore or not: Where to generate hydrogen in future integrated energy systems?," Energy Policy, Elsevier, vol. 174(C).
    12. Johannes Schaffert & Hans Christian Gils & Max Fette & Hedda Gardian & Christine Brandstätt & Thomas Pregger & Nils Brücken & Eren Tali & Marc Fiebrandt & Rolf Albus & Frank Burmeister, 2022. "Integrating System and Operator Perspectives for the Evaluation of Power-to-Gas Plants in the Future German Energy System," Energies, MDPI, vol. 15(3), pages 1-22, February.
    13. Ives, Matthew & Cesaro, Zac & Bramstoft, Rasmus & Bañares-Alcántara, René, 2023. "Facilitating deep decarbonization via sector coupling of green hydrogen and ammonia," INET Oxford Working Papers 2023-04, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    14. Kotek, Peter & Tóth, Borbála Takácsné & Selei, Adrienn, 2023. "Designing a future-proof gas and hydrogen infrastructure for Europe – A modelling-based approach," Energy Policy, Elsevier, vol. 180(C).
    15. D'Orazio, Paola & Hertel, Tobias & Kasbrink, Fynn, 2022. "No need to worry? Estimating the exposure of the German banking sector to climate-related transition risks," Ruhr Economic Papers 946, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    16. Cantú, Victor H. & Ponsich, Antonin & Azzaro-Pantel, Catherine & Carrera, Eduardo, 2023. "Capturing spatial, time-wise and technological detail in hydrogen supply chains: A bi-level multi-objective optimization approach," Applied Energy, Elsevier, vol. 344(C).
    17. Umair Yaqub Qazi, 2022. "Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities," Energies, MDPI, vol. 15(13), pages 1-40, June.
    18. Behrang Shirizadeh & Philippe Quirion, 2023. "Long-term optimization of the hydrogen-electricity nexus in France," Post-Print hal-04347126, HAL.
    19. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    20. Langenmayr, Uwe & Ruppert, Manuel, 2023. "Renewable origin, additionality, temporal and geographical correlation – eFuels production in Germany under the RED II regime," Energy Policy, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5972-:d:891087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.