IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4438-d841872.html
   My bibliography  Save this article

Distributed Volt-Var Curve Optimization Using a Cellular Computational Network Representation of an Electric Power Distribution System

Author

Listed:
  • Hasala Dharmawardena

    (Real-Time Power and Intelligent Systems Laboratory, Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA)

  • Ganesh Kumar Venayagamoorthy

    (Real-Time Power and Intelligent Systems Laboratory, Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA
    School of Engineering, University of KwaZulu-Natal, Durban 4001, South Africa)

Abstract

Voltage control in modern electric power distribution systems has become challenging due to the increasing penetration of distributed energy resources (DER). The current state-of-the-art voltage control is based on static/pre-determined DER volt-var curves. Static volt-var curves do not provide sufficient flexibility to address the temporal and spatial aspects of the voltage control problem in a power system with a large number of DER. This paper presents a simple, scalable, and robust distributed optimization framework (DOF) for optimizing voltage control. The proposed framework allows for data-driven distributed voltage optimization in a power distribution system. This method enhances voltage control by optimizing volt-var curve parameters of inverters in a distributed manner based on a cellular computational network (CCN) representation of the power distribution system. The cellular optimization approach enables the system-wide optimization. The cells to be optimized may be prioritized and two methods namely, graph and impact-based methods, are studied. The impact-based method requires extra initial computational efforts but thereafter provides better computational throughput than the graph-based method. The DOF is illustrated on a modified standard distribution test case with several DERs. The results from the test case demonstrate that the DOF based volt-var optimization results in consistently better performance than the state-of-the-art volt-var control.

Suggested Citation

  • Hasala Dharmawardena & Ganesh Kumar Venayagamoorthy, 2022. "Distributed Volt-Var Curve Optimization Using a Cellular Computational Network Representation of an Electric Power Distribution System," Energies, MDPI, vol. 15(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4438-:d:841872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vishnu Suresh & Przemyslaw Janik & Jacek Rezmer & Zbigniew Leonowicz, 2020. "Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm," Energies, MDPI, vol. 13(3), pages 1-15, February.
    2. Martha N. Acosta & Francisco Gonzalez-Longatt & Manuel A. Andrade & José Luis Rueda Torres & Harold R. Chamorro, 2021. "Assessment of Daily Cost of Reactive Power Procurement by Smart Inverters," Energies, MDPI, vol. 14(16), pages 1-11, August.
    3. Eshan Karunarathne & Akila Wijethunge & Janaka Ekanayake, 2021. "Enhancing PV Hosting Capacity Using Voltage Control and Employing Dynamic Line Rating," Energies, MDPI, vol. 15(1), pages 1-19, December.
    4. Trapero, Juan R. & Kourentzes, Nikolaos & Martin, A., 2015. "Short-term solar irradiation forecasting based on Dynamic Harmonic Regression," Energy, Elsevier, vol. 84(C), pages 289-295.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    2. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    3. Xing Zhang & Zhuoqun Wei, 2019. "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    4. Trapero, Juan R., 2016. "Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates," Energy, Elsevier, vol. 114(C), pages 266-274.
    5. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    6. Hanany Tolba & Nouha Dkhili & Julien Nou & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2020. "Multi-Horizon Forecasting of Global Horizontal Irradiance Using Online Gaussian Process Regression: A Kernel Study," Energies, MDPI, vol. 13(16), pages 1-23, August.
    7. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    8. Gülsah Erdogan & Wiem Fekih Hassen, 2023. "Charging Scheduling of Hybrid Energy Storage Systems for EV Charging Stations," Energies, MDPI, vol. 16(18), pages 1-29, September.
    9. Xiaorui Shao & Chang-Soo Kim & Palash Sontakke, 2020. "Accurate Deep Model for Electricity Consumption Forecasting Using Multi-Channel and Multi-Scale Feature Fusion CNN–LSTM," Energies, MDPI, vol. 13(8), pages 1-22, April.
    10. Zbigniew Leonowicz & Michał Jasiński, 2021. "Signal Analysis in Power Systems," Energies, MDPI, vol. 14(23), pages 1-3, November.
    11. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    12. Muhannad Alaraj & Ibrahim Alsaidan & Astitva Kumar & Mohammad Rizwan & Majid Jamil, 2023. "Advanced Intelligent Approach for Solar PV Power Forecasting Using Meteorological Parameters for Qassim Region, Saudi Arabia," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    13. Lima, Marcello Anderson F.B. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M. & Braga, Arthur P.S., 2020. "Improving solar forecasting using Deep Learning and Portfolio Theory integration," Energy, Elsevier, vol. 195(C).
    14. Jesús Polo, 2022. "Advances and Challenges in Solar PV Systems’ Performance," Energies, MDPI, vol. 15(16), pages 1-2, August.
    15. Pedro, Hugo T.C. & Coimbra, Carlos F.M. & David, Mathieu & Lauret, Philippe, 2018. "Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 191-203.
    16. Dhowmya Bhatt & Danalakshmi D & A. Hariharasudan & Marcin Lis & Marlena Grabowska, 2021. "Forecasting of Energy Demands for Smart Home Applications," Energies, MDPI, vol. 14(4), pages 1-19, February.
    17. Michel Fliess & Cédric Join & Cyril Voyant, 2018. "Prediction bands for solar energy: New short-term time series forecasting techniques," Post-Print hal-01736518, HAL.
    18. Akarslan, Emre & Hocaoglu, Fatih Onur, 2016. "A novel adaptive approach for hourly solar radiation forecasting," Renewable Energy, Elsevier, vol. 87(P1), pages 628-633.
    19. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.
    20. Richard Guanoluisa & Diego Arcos-Aviles & Marco Flores-Calero & Wilmar Martinez & Francesc Guinjoan, 2023. "Photovoltaic Power Forecast Using Deep Learning Techniques with Hyperparameters Based on Bayesian Optimization: A Case Study in the Galapagos Islands," Sustainability, MDPI, vol. 15(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4438-:d:841872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.