IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4380-d839951.html
   My bibliography  Save this article

How to Reintroduce Arable Crops after Growing Perennial Wild Plant Species Such as Common Tansy ( Tanacetum vulgare L.) for Biogas Production

Author

Listed:
  • Moritz von Cossel

    (Biobased Resources in the Bioeconomy (340b), Institute of Crop Science, University of Hohenheim, Fruwirthstr. 23, 70599 Stuttgart, Germany)

Abstract

The cultivation of perennial wild plant mixtures (WPMs) is becoming increasingly important in Germany for providing sustainably produced bioenergy. However, perennial energy cropping systems always raise the question of how to reclaim the land for arable crops. This study examined this issue by looking at how a former WPM area was returned to arable cropping for an organic farm. From 2013 to 2018, the WPM area was harvested annually in the autumn. From 2019 to 2020, it was co-managed with the surrounding land as a semi-intensive grassland under a three-cut regime. The area was then ploughed in the spring of 2021 to grow silage maize. Weeds were controlled mechanically once. Nevertheless, the perennial wild plant species grew vigorously, with common tansy ( Tanacetum vulgare L.) standing out with a total fresh matter share of 29.0%. This maize–WPM mixture achieved a dry matter yield of 15.5 ± 5.5 Mg ha −1 , which was notably but not significantly ( p < 0.05) lower than that of silage maize growing next to the former WPM area (23.4 ± 5.5 Mg ha −1 ). After silage maize, winter wheat was sown in the autumn of 2021 and further regrowth of common tansy was observed in the spring of 2022. Yield and quality effects must therefore be given special consideration in the first arable crop following WPM cultivation.

Suggested Citation

  • Moritz von Cossel, 2022. "How to Reintroduce Arable Crops after Growing Perennial Wild Plant Species Such as Common Tansy ( Tanacetum vulgare L.) for Biogas Production," Energies, MDPI, vol. 15(12), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4380-:d:839951
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Winkler, Bastian & Mangold, Anja & von Cossel, Moritz & Clifton-Brown, John & Pogrzeba, Marta & Lewandowski, Iris & Iqbal, Yasir & Kiesel, Andreas, 2020. "Implementing miscanthus into farming systems: A review of agronomic practices, capital and labour demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    3. Parvez, Ashak Mahmud & Lewis, Jonathan David & Afzal, Muhammad T., 2021. "Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Dariusz Załuski & Józef Tworkowski & Stefan Szczukowski, 2020. "Effects of Site, Genotype and Subsequent Harvest Rotation on Willow Productivity," Agriculture, MDPI, vol. 10(9), pages 1-17, September.
    5. Schneider, Julia M. & Zabel, Florian & Schünemann, Franziska & Delzeit, Ruth & Mauser, Wolfram, 2022. "Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets," Open Access Publications from Kiel Institute for the World Economy 253265, Kiel Institute for the World Economy (IfW Kiel).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwai Chyuan Ong & Adi Kusmayadi & Nor Aishah Saidina Amin, 2023. "Biomass Energy for Environmental Sustainability," Energies, MDPI, vol. 16(7), pages 1-3, March.
    2. Kiefer, Katharina & Kremer, Jasper & Zeitner, Philipp & Winkler, Bastian & Wagner, Moritz & von Cossel, Moritz, 2023. "Monetizing ecosystem services of perennial wild plant mixtures for bioenergy," Ecosystem Services, Elsevier, vol. 61(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Mariusz Jerzy Stolarski, 2021. "Industrial and Bioenergy Crops for Bioeconomy Development," Agriculture, MDPI, vol. 11(9), pages 1-5, September.
    3. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    4. Teng Wu & Fanting Kong & Lei Shi & Qing Xie & Yongfei Sun & Changlin Chen, 2022. "Power Consumption Influence Test of Castor Disc-Cutting Device," Agriculture, MDPI, vol. 12(10), pages 1-14, September.
    5. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Olga Kriger, 2021. "Methods of Increasing Miscanthus Biomass Yield for Biofuel Production," Energies, MDPI, vol. 14(24), pages 1-30, December.
    6. Omid Norouzi & Animesh Dutta, 2022. "The Current Status and Future Potential of Biogas Production from Canada’s Organic Fraction Municipal Solid Waste," Energies, MDPI, vol. 15(2), pages 1-17, January.
    7. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    8. Yang Liu & Chengming Luo & Wangyuan Zong & Xiaomao Huang & Lina Ma & Guodang Lian, 2021. "Optimization of Clamping and Conveying Device for Sunflower Oil Combine Harvester Header," Agriculture, MDPI, vol. 11(9), pages 1-18, September.
    9. Janota, Lukáš & Vávrová, Kamila & Weger, Jan & Knápek, Jaroslav & Králík, Tomáš, 2023. "Complex methodology for optimizing local energy supply and overall resilience of rural areas: A case study of Agrovoltaic system with Miscanthus x giganteus plantation within the energy community in t," Renewable Energy, Elsevier, vol. 212(C), pages 738-750.
    10. Von Cossel, M. & Lebendig, F. & Müller, M. & Hieber, C. & Iqbal, Y. & Cohnen, J. & Jablonowski, N.D., 2022. "Improving combustion quality of Miscanthus by adding biomass from perennial flower-rich wild plant species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Paweł Radzikowski & Mariusz Matyka & Adam Kleofas Berbeć, 2020. "Biodiversity of Weeds and Arthropods in Five Different Perennial Industrial Crops in Eastern Poland," Agriculture, MDPI, vol. 10(12), pages 1-27, December.
    12. Ehsan Tavakoli-Hashjini & Annette Piorr & Klaus Müller & José Luis Vicente-Vicente, 2020. "Potential Bioenergy Production from Miscanthus × giganteus in Brandenburg: Producing Bioenergy and Fostering Other Ecosystem Services while Ensuring Food Self-Sufficiency in the Berlin-Brandenburg Reg," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    13. Andrzej Mazur & Alina Kowalczyk-Juśko, 2021. "The Assessment of the Usefulness of Miscanthus x giganteus to Water and Soil Protection against Erosive Degradation," Resources, MDPI, vol. 10(7), pages 1-18, June.
    14. Alina Kowalczyk-Juśko & Andrzej Mazur & Patrycja Pochwatka & Damian Janczak & Jacek Dach, 2022. "Evaluation of the Effects of Using the Giant Miscanthus ( Miscanthus × Giganteus ) Biomass in Various Energy Conversion Processes," Energies, MDPI, vol. 15(10), pages 1-16, May.
    15. Dongjie Li & Shuqi Shang & Xiaoning He & Zhuang Zhao & Zengcun Chang & Yuetao Wang & Dongwei Wang, 2022. "Experiments and Analysis of a Peanut Semi-Feeding Picking Mechanism Based on the JKR Model," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
    16. Obed Quaicoe & Fafanyo Asiseh & Omoanghe S. Isikhuemhen, 2023. "Qualitative Analysis of Industrial Hemp Production, Markets, and Sustainability in North Carolina, United States," Agriculture, MDPI, vol. 13(4), pages 1-19, April.
    17. Eva Fauziah & Arthur Josias Simon Runturambi, 2023. "Pros and Cons of Medical Cannabis Legalization in Indonesia," Technium Social Sciences Journal, Technium Science, vol. 45(1), pages 343-352, July.
    18. Adam Kleofas Berbeć & Mariusz Matyka, 2020. "Biomass Characteristics and Energy Yields of Tobacco ( Nicotiana tabacum L.) Cultivated in Eastern Poland," Agriculture, MDPI, vol. 10(11), pages 1-12, November.
    19. Cervelli, Elena & Recchi, Pier Francesco & Fagnano, Massimo & Scotto di Perta, Ester & Pindozzi, Stefania, 2024. "Marginal lands between recovery and valorization. An inclusive definition to support bio-energy supply chains. The Southern Italy contexts case study," Agricultural Systems, Elsevier, vol. 217(C).
    20. Walter Stefanoni & Francesco Latterini & Javier Prieto Ruiz & Simone Bergonzoli & Consuelo Attolico & Luigi Pari, 2020. "Mechanical Harvesting of Camelina: Work Productivity, Costs and Seed Loss Evaluation," Energies, MDPI, vol. 13(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4380-:d:839951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.