IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4247-d834909.html
   My bibliography  Save this article

Diagnosing Improper Membrane Water Content in Proton Exchange Membrane Fuel Cell Using Two-Dimensional Convolutional Neural Network

Author

Listed:
  • Heng Zhang

    (School of Artificial Intelligence and Big Data, Hefei University, Hefei 230601, China)

  • Zhongyong Liu

    (Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China)

  • Weilai Liu

    (Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China)

  • Lei Mao

    (Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
    Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China)

Abstract

In existing proton exchange membrane fuel cell (PEMFC) applications, improper membrane water management will cause PEMFC performance decay, which restricts the reliability and durability of PEMFC systems. Therefore, diagnosing improper water content in the PEMFC membrane is the key to taking appropriate mitigations to guarantee its operating safety. This paper proposes a novel approach for diagnosing improper PEMFC water content using a two-dimensional convolutional neural network (2D-CNN). In the analysis, the collected PEMFC voltage signal is transformed into 2D image data, which is then used to train the 2D-CNN. Data enhancement and pre-processing techniques are applied to PEMFC voltage data before the training. Results demonstrate that with the trained model, the diagnostic accuracy for PEMFC membrane improper water content can reach 97.5%. Moreover, by comparing it with a one-dimensional convolutional neural network (1D-CNN), the noise robustness of the proposed method can be better highlighted. Furthermore, t-distributed Stochastic Neighbor Embedding (t-SNE) is used to visualize the feature separability with different methods. With the findings, the effectiveness of using 2D-CNN for diagnosing PEMFC membrane improper water content is explored.

Suggested Citation

  • Heng Zhang & Zhongyong Liu & Weilai Liu & Lei Mao, 2022. "Diagnosing Improper Membrane Water Content in Proton Exchange Membrane Fuel Cell Using Two-Dimensional Convolutional Neural Network," Energies, MDPI, vol. 15(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4247-:d:834909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xiaojie & Zhang, Tong & Chen, Huicui & Cao, Yinliang, 2021. "A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 286(C).
    2. Lipman, Timothy E. & Edwards, Jennifer L. & Kammen, Daniel M., 2004. "Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems," Energy Policy, Elsevier, vol. 32(1), pages 101-125, January.
    3. Zhang, Zehan & Li, Shuanghong & Xiao, Yawen & Yang, Yupu, 2019. "Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning," Applied Energy, Elsevier, vol. 233, pages 930-942.
    4. Esbo, M. Rahimi- & Ranjbar, A.A. & Rahgoshay, S.M., 2020. "Analysis of water management in PEM fuel cell stack at dead-end mode using direct visualization," Renewable Energy, Elsevier, vol. 162(C), pages 212-221.
    5. Shao, Meng & Zhu, Xin-Jian & Cao, Hong-Fei & Shen, Hai-Feng, 2014. "An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system," Energy, Elsevier, vol. 67(C), pages 268-275.
    6. Vasilyev, A. & Andrews, J. & Dunnett, S.J. & Jackson, L.M., 2021. "Dynamic Reliability Assessment of PEM Fuel Cell Systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    2. Yonghua Cai & Jingming Sun & Fan Wei & Ben Chen, 2022. "Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(10), pages 1-19, May.
    3. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    4. Guk, Erdogan & Venkatesan, Vijay & Babar, Shumaila & Jackson, Lisa & Kim, Jung-Sik, 2019. "Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell," Applied Energy, Elsevier, vol. 241(C), pages 164-173.
    5. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Wang, Shunli & Wu, Fan & Takyi-Aninakwa, Paul & Fernandez, Carlos & Stroe, Daniel-Ioan & Huang, Qi, 2023. "Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-curren," Energy, Elsevier, vol. 284(C).
    7. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    8. M. Ganesan & R. Lavanya, 2023. "Simultaneous fault detection in satellite power systems using deep autoencoders and classifier chain," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 83(1), pages 1-15, May.
    9. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    10. Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.
    11. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2021. "Working zone for a least-squares support vector machine for modeling polymer electrolyte fuel cell voltage," Applied Energy, Elsevier, vol. 283(C).
    12. Lipman, Tim & Kammen, Daniel & Ogden, Joan & Sperling, Dan, 2004. "An Integrated Hydrogen Vision for California," Institute of Transportation Studies, Working Paper Series qt9hx260wp, Institute of Transportation Studies, UC Davis.
    13. Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry," Energy, Elsevier, vol. 162(C), pages 593-602.
    15. Sanjay Kumar Kar & Akhoury Sudhir Kumar Sinha & Sidhartha Harichandan & Rohit Bansal & Marriyappan Sivagnanam Balathanigaimani, 2023. "Hydrogen economy in India: A status review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    16. Dong Zhu & Yanbo Yang & Tiancai Ma, 2022. "Evaluation the Resistance Growth of Aged Vehicular Proton Exchange Membrane Fuel Cell Stack by Distribution of Relaxation Times," Sustainability, MDPI, vol. 14(9), pages 1-19, May.
    17. Brkovic, Aleksandar & Gajic, Dragoljub & Gligorijevic, Jovan & Savic-Gajic, Ivana & Georgieva, Olga & Di Gennaro, Stefano, 2017. "Early fault detection and diagnosis in bearings for more efficient operation of rotating machinery," Energy, Elsevier, vol. 136(C), pages 63-71.
    18. Ren, Peng & Pei, Pucheng & Chen, Dongfang & Zhang, Lu & Li, Yuehua & Song, Xin & Wang, Mingkai & Wang, He, 2022. "Corrosion of metallic bipolar plates accelerated by operating conditions in a simulated PEM fuel cell cathode environment," Renewable Energy, Elsevier, vol. 194(C), pages 1277-1287.
    19. Özçelep, Yasin & Sevgen, Selcuk & Samli, Ruya, 2020. "A study on the hydrogen consumption calculation of proton exchange membrane fuel cells for linearly increasing loads: Artificial Neural Networks vs Multiple Linear Regression," Renewable Energy, Elsevier, vol. 156(C), pages 570-578.
    20. Weinert, Jonathan X. & Lipman, Timothy, 2006. "An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components," Institute of Transportation Studies, Working Paper Series qt65f0n732, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4247-:d:834909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.