IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3983-d826449.html
   My bibliography  Save this article

Effect of Combined Particle Size Reduction and Fe 3 O 4 Additives on Biogas and Methane Yields of Arachis hypogea Shells at Mesophilic Temperature

Author

Listed:
  • Kehinde O. Olatunji

    (Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg 2006, South Africa)

  • Daniel M. Madyira

    (Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg 2006, South Africa)

  • Noor A. Ahmed

    (Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg 2006, South Africa)

  • Oyetola Ogunkunle

    (Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg 2006, South Africa)

Abstract

Enzymatic hydrolysis of lignocellulose materials has been identified as the rate-limiting step during anaerobic digestion. The application of pretreatment techniques can influence the biodegradability of lignocellulose substrate. This study combined Fe 3 O 4 nanoparticles, which serve as a heterogeneous catalyst during anaerobic digestion, with different particle sizes of Arachis hypogea shells. Batch anaerobic digestion was set up at mesophilic temperature for 35 days. The results showed that 20 mg/L Fe 3 O 4 additives, as a single pretreatment, significantly influence biogas and methane yields with an 80.59 and 106.66% increase, respectively. The combination of 20 mg/L Fe 3 O 4 with a 6 mm particle size of Arachis hypogea shells produced the highest cumulative biogas yield of 130.85 mL/gVS added and a cumulative methane yield of 100.86 mL/gVS added . This study shows that 20 mg/L of Fe 3 O 4 additive, combined with the particle size pretreatment, improved the biogas and methane yields of Arachis hypogea shells. This result can be replicated on the industrial scale to improve the energy recovery from Arachis hypogea shells.

Suggested Citation

  • Kehinde O. Olatunji & Daniel M. Madyira & Noor A. Ahmed & Oyetola Ogunkunle, 2022. "Effect of Combined Particle Size Reduction and Fe 3 O 4 Additives on Biogas and Methane Yields of Arachis hypogea Shells at Mesophilic Temperature," Energies, MDPI, vol. 15(11), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3983-:d:826449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olatunji, Kehinde O. & Ahmed, Noor A. & Madyira, Daniel M. & Adebayo, Ademola O. & Ogunkunle, Oyetola & Adeleke, Oluwatobi, 2022. "Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from Arachis hypogea shells pretreated with size reduction," Renewable Energy, Elsevier, vol. 189(C), pages 288-303.
    2. Tiande Mo & Kin-tak Lau & Yu Li & Chi-kin Poon & Yinghong Wu & Paul K. Chu & Yang Luo, 2022. "Commercialization of Electric Vehicles in Hong Kong," Energies, MDPI, vol. 15(3), pages 1-27, January.
    3. Leonidas Matsakas & Christos Nitsos & Dimitrij Vörös & Ulrika Rova & Paul Christakopoulos, 2017. "High-Titer Methane from Organosolv-Pretreated Spruce and Birch," Energies, MDPI, vol. 10(3), pages 1-15, February.
    4. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kehinde O. Olatunji & Daniel M. Madyira, 2023. "Optimization of Biomethane Yield of Xyris capensis Grass Using Oxidative Pretreatment," Energies, MDPI, vol. 16(10), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    2. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    3. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    4. Christos Nitsos & Ulrika Rova & Paul Christakopoulos, 2017. "Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications," Energies, MDPI, vol. 11(1), pages 1-23, December.
    5. Vasmara, Ciro & Marchetti, Rosa & Carminati, Domenico, 2021. "Wastewater from the production of lactic acid bacteria as feedstock in anaerobic digestion," Energy, Elsevier, vol. 229(C).
    6. Krystyna Lelicińska-Serafin & Piotr Manczarski & Anna Rolewicz-Kalińska, 2023. "An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy," Energies, MDPI, vol. 16(4), pages 1-13, February.
    7. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    8. Sangmin Kim & Seung-Gyun Woo & Joonyeob Lee & Dae-Hee Lee & Seokhwan Hwang, 2019. "Evaluation of Feasibility of Using the Bacteriophage T4 Lysozyme to Improve the Hydrolysis and Biochemical Methane Potential of Secondary Sludge," Energies, MDPI, vol. 12(19), pages 1-14, September.
    9. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2023. "Application of nested artificial neural network for the prediction of significant wave height," Renewable Energy, Elsevier, vol. 209(C), pages 157-168.
    11. Vasiliki Kamperidou & Paschalina Terzopoulou, 2021. "Anaerobic Digestion of Lignocellulosic Waste Materials," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    12. Margarita Andreas Dareioti & Aikaterini Ioannis Vavouraki & Konstantina Tsigkou & Michael Kornaros, 2021. "Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey," Energies, MDPI, vol. 14(17), pages 1-14, August.
    13. Seppo Borenius & Petri Tuomainen & Jyri Tompuri & Jesse Mansikkamäki & Matti Lehtonen & Heikki Hämmäinen & Raimo Kantola, 2022. "Scenarios on the Impact of Electric Vehicles on Distribution Grids," Energies, MDPI, vol. 15(13), pages 1-30, June.
    14. Mariusz Kostrzewski & Magdalena Marczewska & Lorna Uden, 2023. "The Internet of Vehicles and Sustainability—Reflections on Environmental, Social, and Corporate Governance," Energies, MDPI, vol. 16(7), pages 1-20, April.
    15. Sivabalan Kaniapan & Jagadeesh Pasupuleti & Kartikeyan Patma Nesan & Haris Nalakath Abubackar & Hadiza Aminu Umar & Temidayo Lekan Oladosu & Segun R. Bello & Eldon R. Rene, 2022. "A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    16. Patrícia V. Almeida & Rafaela P. Rodrigues & Leonor M. Teixeira & Andreia F. Santos & Rui C. Martins & Margarida J. Quina, 2021. "Bioenergy Production through Mono and Co-Digestion of Tomato Residues," Energies, MDPI, vol. 14(17), pages 1-16, September.
    17. Bi, Shaojie & Hong, Xiujie & Yang, Hongzhi & Yu, Xinhui & Fang, Shumei & Bai, Yan & Liu, Jinli & Gao, Yamei & Yan, Lei & Wang, Weidong & Wang, Yanjie, 2020. "Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste," Renewable Energy, Elsevier, vol. 150(C), pages 213-220.
    18. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    19. Furqan Muhayodin & Albrecht Fritze & Oliver Christopher Larsen & Marcel Spahr & Vera Susanne Rotter, 2021. "Co-Digestion of Rice Straw with Cow Manure in an Innovative Temperature Phased Anaerobic Digestion Technology: Performance Evaluation and Trace Elements," Energies, MDPI, vol. 14(9), pages 1-20, April.
    20. Zhou, Jialiang & Zhang, Yuanhui & Khoshnevisan, Benyamin & Duan, Na, 2021. "Meta-analysis of anaerobic co-digestion of livestock manure in last decade: Identification of synergistic effect and optimization synergy range," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3983-:d:826449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.