IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3839-d822090.html
   My bibliography  Save this article

Projecting and Forecasting the Latent Volatility for the Nasdaq OMX Nordic/Baltic Financial Electricity Market Applying Stochastic Volatility Market Characteristics

Author

Listed:
  • Per Bjarte Solibakke

    (Faculty of Economics and Management, Norwegian University of Science and Technology, Larsgårdsveien 2, 6025 Ålesund, Norway)

Abstract

In this empirical study, multifactor stochastic volatility models for the financial Nordic/Baltic power markets are developed, implemented, and analyzed. Stochastic volatility projections are the primary aim, followed by volatility forecasts and market repercussions. The research provides a functional variant of the conditional distribution ( f ( x | y ) ) based on conditional moments and a long-simulated state vector realization (MCMC-GMM) that is evaluated on observed data (a non-linear Kalman Filter) and applicable for step-forward volatility forecasts. For front year and quarter financial electricity contracts, the SV model creates two mean-reverting factors: one persistent and slowly moving component and one choppy, rapidly moving component. According to these factors, static volatility predictions with optimum and generous lags have a Theil covariance percentage of well over 97 percent for the front year contracts and 86 percent for the front quarter contracts. The volatility visibility and its associated static forecasts improve market transparency and will eventually make diversification and risk management easier to implement.

Suggested Citation

  • Per Bjarte Solibakke, 2022. "Projecting and Forecasting the Latent Volatility for the Nasdaq OMX Nordic/Baltic Financial Electricity Market Applying Stochastic Volatility Market Characteristics," Energies, MDPI, vol. 15(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3839-:d:822090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    4. Donald W. K. Andrews, 2003. "Tests for Parameter Instability and Structural Change with Unknown Change Point: A Corrigendum," Econometrica, Econometric Society, vol. 71(1), pages 395-397, January.
    5. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    6. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    7. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
    8. Barr Rosenberg., 1972. "The Behavior of Random Variables with Nonstationary Variance and the Distribution of Security Prices," Research Program in Finance Working Papers 11, University of California at Berkeley.
    9. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    10. James S. Doran, 2020. "Volatility as an asset class: Holding VIX in a portfolio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 841-859, June.
    11. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    12. Alexander, Carol & Korovilas, Dimitris & Kapraun, Julia, 2016. "Diversification with volatility products," Journal of International Money and Finance, Elsevier, vol. 65(C), pages 213-235.
    13. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    14. Christoffer Bordonado & Peter Molnár & Sven R. Samdal, 2017. "VIX Exchange Traded Products: Price Discovery, Hedging, and Trading Strategy," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(2), pages 164-183, February.
    15. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    16. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    17. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    3. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    4. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    5. Ming Liu & Harold H. Zhang, "undated". "Specification Tests in the Efficient Method of Moments Framework with Application to the Stochastic Volatility Models," Computing in Economics and Finance 1997 93, Society for Computational Economics.
    6. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    7. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Per Bjarte Solibakke, 2021. "Forecasting Stochastic Volatility Characteristics for the Financial Fossil Oil Market Densities," JRFM, MDPI, vol. 14(11), pages 1-17, October.
    9. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.
    10. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    11. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    12. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    13. Gómez-Puig, Marta & Sosvilla-Rivero, Simón, 2014. "Causality and contagion in EMU sovereign debt markets," International Review of Economics & Finance, Elsevier, vol. 33(C), pages 12-27.
    14. Bertrand Groslambert & Raphaël Chiappini & Olivier Bruno, 2015. "Bank Output Calculation in the Case of France: What Do New Methods Tell About the Financial Intermediation Services in the Aftermath of the Crisis?," GREDEG Working Papers 2015-32, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    15. Marotta, Giuseppe, 2009. "Structural breaks in the lending interest rate pass-through and the euro," Economic Modelling, Elsevier, vol. 26(1), pages 191-205, January.
    16. Kausik Chaudhuri & Alok Kumar, 2015. "A Markov-Switching Model for Indian Stock Price and Volume," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 14(3), pages 239-257, December.
    17. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    18. Jeng-Bau Lin & Chin-Chia Liang & Wei Tsai, 2019. "Nonlinear Relationships between Oil Prices and Implied Volatilities: Providing More Valuable Information," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    19. Syed Kanwar Abbas, 2018. "Global slack hypothesis: evidence from China, India and Pakistan," Empirical Economics, Springer, vol. 54(2), pages 593-627, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3839-:d:822090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.