IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p25-d707723.html
   My bibliography  Save this article

Experimental Characterization of an Adaptive Supersonic Micro Turbine for Waste Heat Recovery Applications

Author

Listed:
  • Tobias Popp

    (Chair of Engineering Thermodynamics and Transport Processes (LTTT), Center of Energy Technology (ZET), University of Bayreuth, 95440 Bayreuth, Germany)

  • Andreas P. Weiß

    (Center of Excellence for Cogeneration Technologies, Technical University of Applied Sciences Amberg-Weiden, 92224 Amberg, Germany)

  • Florian Heberle

    (Chair of Engineering Thermodynamics and Transport Processes (LTTT), Center of Energy Technology (ZET), University of Bayreuth, 95440 Bayreuth, Germany)

  • Julia Winkler

    (DEPRAG SCHULZ GMBH u. CO., 92224 Amberg, Germany)

  • Rüdiger Scharf

    (DEPRAG SCHULZ GMBH u. CO., 92224 Amberg, Germany)

  • Theresa Weith

    (Chair of Engineering Thermodynamics and Transport Processes (LTTT), Center of Energy Technology (ZET), University of Bayreuth, 95440 Bayreuth, Germany)

  • Dieter Brüggemann

    (Chair of Engineering Thermodynamics and Transport Processes (LTTT), Center of Energy Technology (ZET), University of Bayreuth, 95440 Bayreuth, Germany)

Abstract

Micro turbines (<100 kW el ) are commercially used as expansion machines in waste heat recovery (WHR) systems such as organic Rankine cycles (ORCs). These highly loaded turbines are generally designed for a specific parameter set, and their isentropic expansion efficiency significantly deteriorates when the mass flow rate of the WHR system deviates from the design point. However, in numerous industry processes that are potentially interesting for the implementation of a WHR process, the temperature, mass flow rate or both can fluctuate significantly, resulting in fluctuations in the WHR system as well. In such circumstances, the inlet pressure of the ORC turbine, and therefore the reversible cycle efficiency must be significantly reduced during these fluctuations. In this context, the authors developed an adaptive supersonic micro turbine for WHR applications. The variable geometry of the turbine nozzles enables an adjustment of the swallowing capacity in respect of the available mass flow rate in order to keep the upper cycle pressure constant. In this paper, an experimental test series of a WHR ORC test rig equipped with the developed adaptive supersonic micro turbine is analysed. The adaptive turbine is characterized concerning its off-design performance and the results are compared to a reference turbine with fixed geometry. To create a fair data basis for this comparison, a digital twin of the plant based on experimental data was built. In addition to the characterization of the turbine itself, the influence of the improved pressure ratio on the energy conversion chain of the entire ORC is analysed.

Suggested Citation

  • Tobias Popp & Andreas P. Weiß & Florian Heberle & Julia Winkler & Rüdiger Scharf & Theresa Weith & Dieter Brüggemann, 2021. "Experimental Characterization of an Adaptive Supersonic Micro Turbine for Waste Heat Recovery Applications," Energies, MDPI, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:25-:d:707723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pantaleo, Antonio M. & Fordham, Julia & Oyewunmi, Oyeniyi A. & De Palma, Pietro & Markides, Christos N., 2018. "Integrating cogeneration and intermittent waste-heat recovery in food processing: Microturbines vs. ORC systems in the coffee roasting industry," Applied Energy, Elsevier, vol. 225(C), pages 782-796.
    2. Pili, R. & García Martínez, L. & Wieland, C. & Spliethoff, H., 2020. "Techno-economic potential of waste heat recovery from German energy-intensive industry with Organic Rankine Cycle technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.
    4. Nardin, Gioacchino & Meneghetti, Antonella & Dal Magro, Fabio & Benedetti, Nicole, 2014. "PCM-based energy recovery from electric arc furnaces," Applied Energy, Elsevier, vol. 136(C), pages 947-955.
    5. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    2. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova & Tatyana Tarasova & Aleksandr Karelin & Vladimir Konchakov & Olga Kornyakova, 2023. "Increasing Thermal Efficiency: Methods, Case Studies, and Integration of Heat Exchangers with Renewable Energy Sources and Heat Pumps for Desalination," Energies, MDPI, vol. 16(13), pages 1-36, June.
    3. Enhua Wang & Ningjian Peng, 2023. "A Review on the Preliminary Design of Axial and Radial Turbines for Small-Scale Organic Rankine Cycle," Energies, MDPI, vol. 16(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
    3. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    4. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Florian Raab & Lennart Böse & Harald Klein & Frank Opferkuch, 2024. "Steam Storage Rankine Cycle for Unutilized Applications in Distributed High-Temperature Waste Heat Recovery," Energies, MDPI, vol. 17(4), pages 1-26, February.
    7. White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
    8. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    9. Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
    10. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    11. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    12. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    13. Wang, Xuewei & Wang, Jing & Wang, Lin & Yuan, Ruiming, 2019. "Non-overlapping moving compressive measurement algorithm for electrical energy estimation of distorted m-sequence dynamic test signal," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Li, Zhi & Wang, Lei & Jiang, Ruicheng & Wang, Bingzheng & Yu, Xiaonan & Huang, Rui & Yu, Xiaoli, 2022. "Experimental investigations on dynamic performance of organic Rankine cycle integrated with latent thermal energy storage under transient engine conditions," Energy, Elsevier, vol. 246(C).
    15. Raul Garcia-Segura & Javier Vázquez Castillo & Fernando Martell-Chavez & Omar Longoria-Gandara & Jaime Ortegón Aguilar, 2017. "Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient," Energies, MDPI, vol. 10(9), pages 1-11, September.
    16. Michael Chukwuemeka Ekwonu & Mirae Kim & Binqi Chen & Muhammad Tauseef Nasir & Kyung Chun Kim, 2023. "Dynamic Simulation of Partial Load Operation of an Organic Rankine Cycle with Two Parallel Expanders," Energies, MDPI, vol. 16(1), pages 1-18, January.
    17. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.
    18. Manojlović, Vaso & Kamberović, Željko & Korać, Marija & Dotlić, Milan, 2022. "Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters," Applied Energy, Elsevier, vol. 307(C).
    19. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    20. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:25-:d:707723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.