IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2591-d547659.html
   My bibliography  Save this article

Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables

Author

Listed:
  • Diana Enescu

    (Electronics Telecommunications and Energy Department, University Valahia of Targoviste, 130004 Targoviște, Romania)

  • Pietro Colella

    (Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, 10129 Torino, Italy)

  • Angela Russo

    (Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, 10129 Torino, Italy)

  • Radu Florin Porumb

    (Electrical Power Systems Department, University Politehnica of Bucharest, RO-060042 Bucharest, Romania)

  • George Calin Seritan

    (Department of Measurements, Electrical Devices and Static Converters, University Politehnica of Bucharest, RO-060042 Bucharest, Romania)

Abstract

With the increase in the electrical load and the progressive introduction of power generation from intermittent renewable energy sources, the power line operating conditions are approaching the thermal limits. The definition of thermal limits variable in time has been addressed under the concept of dynamic thermal rating (DTR), with which it is possible to provide a more detailed assessment of the line rating and exploit the electrical system more flexibly. Most of the literature on DTR has addressed overhead lines exposed to different weather conditions. The interest in the dynamic thermal rating of power cables is increasing, considering the evolution of computational methods and advanced systems for cable monitoring. This paper contains an overview of the concepts and methods referring to dynamic cable rating (DCR). Starting from the analytical formulations developed many years ago for determining the power cable rating in steady-state conditions, also reported in International Standards, this paper considers the improvements of these formulations proposed during the years. These improvements are leading to include more specific details in the models used for DCR analysis and the computational methods used to assess the power cable’s thermal conditions buried in soil. This paper is focused on highlighting the path from the initial theories and models to the latest literature contributions. Attention is paid to thermal modelling with different levels of detail, applications of 2D and 3D solvers and simplified models, and their validation based on experimental measurements. A salient point of the overview is considering the DCR impact on reliability aspects, risk estimation, real-time calculations, forecasting, and planning with different time horizons.

Suggested Citation

  • Diana Enescu & Pietro Colella & Angela Russo & Radu Florin Porumb & George Calin Seritan, 2021. "Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables," Energies, MDPI, vol. 14(9), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2591-:d:547659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Gülşen Erdinç & Ozan Erdinç & Recep Yumurtacı & João P. S. Catalão, 2020. "A Comprehensive Overview of Dynamic Line Rating Combined with Other Flexibility Options from an Operational Point of View," Energies, MDPI, vol. 13(24), pages 1-30, December.
    2. Rees, S. W. & Adjali, M. H. & Zhou, Z. & Davies, M. & Thomas, H. R., 2000. "Ground heat transfer effects on the thermal performance of earth-contact structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(3), pages 213-265, September.
    3. Karimi, Soheila & Musilek, Petr & Knight, Andrew M., 2018. "Dynamic thermal rating of transmission lines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 600-612.
    4. Paweł Ocłoń & Janusz Pobędza & Paweł Walczak & Piotr Cisek & Andrea Vallati, 2020. "Experimental Validation of a Heat Transfer Model in Underground Power Cable Systems," Energies, MDPI, vol. 13(7), pages 1-10, April.
    5. Diana Enescu & Pietro Colella & Angela Russo, 2020. "Thermal Assessment of Power Cables and Impacts on Cable Current Rating: An Overview," Energies, MDPI, vol. 13(20), pages 1-36, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianfranco Chicco & Andrea Mazza & Salvatore Musumeci & Enrico Pons & Angela Russo, 2022. "Editorial for the Special Issue “Verifying the Targets—Selected Papers from the 55th International Universities Power Engineering Conference (UPEC 2020)”," Energies, MDPI, vol. 15(15), pages 1-8, August.
    2. Shahbaz Ahmad & Zarghaam Haider Rizvi & Joan Chetam Christine Arp & Frank Wuttke & Vineet Tirth & Saiful Islam, 2021. "Evolution of Temperature Field around Underground Power Cable for Static and Cyclic Heating," Energies, MDPI, vol. 14(23), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levente Rácz & Bálint Németh & Gábor Göcsei & Dimitar Zarchev & Valeri Mladenov, 2022. "Performance Analysis of a Dynamic Line Rating System Based on Project Experiences," Energies, MDPI, vol. 15(3), pages 1-11, January.
    2. Bogdan Perka & Karol Piwowarski, 2021. "A Method for Determining the Impact of Ambient Temperature on an Electrical Cable during a Fire," Energies, MDPI, vol. 14(21), pages 1-19, November.
    3. Kai Chen & Yi Yue & Yuejin Tang, 2021. "Research on Temperature Monitoring Method of Cable on 10 kV Railway Power Transmission Lines Based on Distributed Temperature Sensor," Energies, MDPI, vol. 14(12), pages 1-15, June.
    4. Glaum, Philipp & Hofmann, Fabian, 2023. "Leveraging the existing German transmission grid with dynamic line rating," Applied Energy, Elsevier, vol. 343(C).
    5. Ocłoń, Paweł, 2021. "The effect of soil thermal conductivity and cable ampacity on the thermal performance and material costs of underground transmission line," Energy, Elsevier, vol. 231(C).
    6. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    7. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kang, Han-byul, 2014. "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects," Applied Energy, Elsevier, vol. 125(C), pages 165-178.
    8. de Moel, Monique & Bach, Peter M. & Bouazza, Abdelmalek & Singh, Rao M. & Sun, JingLiang O., 2010. "Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2683-2696, December.
    9. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Romuald Masnicki & Janusz Mindykowski & Beata Palczynska, 2022. "Experiment-Based Study of Heat Dissipation from the Power Cable in a Casing Pipe," Energies, MDPI, vol. 15(13), pages 1-16, June.
    11. Jiaming Wang & Hailong He & Miles Dyck & Jialong Lv, 2020. "A Review and Evaluation of Predictive Models for Thermal Conductivity of Sands at Full Water Content Range," Energies, MDPI, vol. 13(5), pages 1-15, March.
    12. Paolo Sospiro & Lohith Amarnath & Vincenzo Di Nardo & Giacomo Talluri & Foad H. Gandoman, 2021. "Smart Grid in China, EU, and the US: State of Implementation," Energies, MDPI, vol. 14(18), pages 1-16, September.
    13. Riba, Jordi-Roger & Santiago Bogarra, & Gómez-Pau, Álvaro & Moreno-Eguilaz, Manuel, 2020. "Uprating of transmission lines by means of HTLS conductors for a sustainable growth: Challenges, opportunities, and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.
    15. Shin, Jiyoun & Kim, Kyung-Ho & Lee, Kang-Kun & Kim, Hyoung-Soo, 2010. "Assessing temperature of riverbank filtrate water for geothermal energy utilization," Energy, Elsevier, vol. 35(6), pages 2430-2439.
    16. Raquel Martinez & Mario Manana & Alberto Arroyo & Sergio Bustamante & Alberto Laso & Pablo Castro & Rafael Minguez, 2021. "Dynamic Rating Management of Overhead Transmission Lines Operating under Multiple Weather Conditions," Energies, MDPI, vol. 14(4), pages 1-21, February.
    17. Park, Hyunku & Lee, Seung-Rae & Yoon, Seok & Choi, Jung-Chan, 2013. "Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation," Applied Energy, Elsevier, vol. 103(C), pages 12-24.
    18. Shamsul Fahmi Mohd Nor & Mohd Zainal Abidin Ab Kadir & Azrul Mohd Ariffin & Miszaina Osman & Muhammad Syahmi Abd Rahman & Noorlina Mohd Zainuddin, 2021. "Issues and Challenges in Voltage Uprating for Sustainable Power Operation: A Case Study of a 132 kV Transmission Line System in Malaysia," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    19. Teresa Nogueira & José Magano & Ezequiel Sousa & Gustavo R. Alves, 2021. "The Impacts of Battery Electric Vehicles on the Power Grid: A Monte Carlo Method Approach," Energies, MDPI, vol. 14(23), pages 1-18, December.
    20. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2591-:d:547659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.