IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1136-d503095.html
   My bibliography  Save this article

Dynamic Rating Management of Overhead Transmission Lines Operating under Multiple Weather Conditions

Author

Listed:
  • Raquel Martinez

    (Department of Electrical and Energy Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain)

  • Mario Manana

    (Department of Electrical and Energy Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain)

  • Alberto Arroyo

    (Department of Electrical and Energy Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain)

  • Sergio Bustamante

    (Department of Electrical and Energy Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain)

  • Alberto Laso

    (Department of Electrical and Energy Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain)

  • Pablo Castro

    (Department of Electrical and Energy Engineering, University of Cantabria, Av. Los Castros s/n., 39005 Santander, Spain)

  • Rafael Minguez

    (Viesgo Distribution, S.L. C/ Isabel Torres 25, (PCTCAN), 39011 Santander, Spain)

Abstract

Integration of a large number of renewable systems produces line congestions, resulting in a problem for distribution companies, since the lines are not capable of transporting all the energy that is generated. Both environmental and economic constraints do not allow the building new lines to manage the energy from renewable sources, so the efforts have to focus on the existing facilities. Dynamic Rating Management (DRM) of power lines is one of the best options to achieve an increase in the capacity of the lines. The practical application of DRM, based on standards IEEE (Std.738, 2012) and CIGRE TB601 (Technical Brochure 601, 2014) , allows to find several deficiencies related to errors in estimations. These errors encourage the design of a procedure to obtain high accuracy ampacity values. In the case of this paper, two methodologies have been tested to reduce estimation errors. Both methodologies use the variation of the weather inputs. It is demonstrated that a reduction of the conductor temperature calculation error has been achieved and, consequently, a reduction of ampacity error.

Suggested Citation

  • Raquel Martinez & Mario Manana & Alberto Arroyo & Sergio Bustamante & Alberto Laso & Pablo Castro & Rafael Minguez, 2021. "Dynamic Rating Management of Overhead Transmission Lines Operating under Multiple Weather Conditions," Energies, MDPI, vol. 14(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1136-:d:503095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jintae Cho & Jae-Han Kim & Hak-Ju Lee & Ju-Yong Kim & Il-Keun Song & Joon-Ho Choi, 2014. "Development and Improvement of an Intelligent Cable Monitoring System for Underground Distribution Networks Using Distributed Temperature Sensing," Energies, MDPI, vol. 7(2), pages 1-19, February.
    2. F. Gülşen Erdinç & Ozan Erdinç & Recep Yumurtacı & João P. S. Catalão, 2020. "A Comprehensive Overview of Dynamic Line Rating Combined with Other Flexibility Options from an Operational Point of View," Energies, MDPI, vol. 13(24), pages 1-30, December.
    3. Davide Lauria & Fabio Mottola & Stefano Quaia, 2019. "Analytical Description of Overhead Transmission Lines Loadability," Energies, MDPI, vol. 12(16), pages 1-18, August.
    4. Alberto Arroyo & Pablo Castro & Raquel Martinez & Mario Manana & Alfredo Madrazo & Ramón Lecuna & Antonio Gonzalez, 2015. "Comparison between IEEE and CIGRE Thermal Behaviour Standards and Measured Temperature on a 132-kV Overhead Power Line," Energies, MDPI, vol. 8(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, Tyler & DeLeon, Rey & Senocak, Inanc, 2017. "Dynamic rating of overhead transmission lines over complex terrain using a large-eddy simulation paradigm," Renewable Energy, Elsevier, vol. 108(C), pages 380-389.
    2. Hideharu Sugihara & Tsuyoshi Funaki & Nobuyuki Yamaguchi, 2017. "Evaluation Method for Real-Time Dynamic Line Ratings Based on Line Current Variation Model for Representing Forecast Error of Intermittent Renewable Generation," Energies, MDPI, vol. 10(4), pages 1-16, April.
    3. Oludamilare Bode Adewuyi & Ayooluwa Peter Adeagbo & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Yanxia Sun, 2021. "Modified Analytical Approach for PV-DGs Integration into a Radial Distribution Network Considering Loss Sensitivity and Voltage Stability," Energies, MDPI, vol. 14(22), pages 1-20, November.
    4. Paolo Sospiro & Lohith Amarnath & Vincenzo Di Nardo & Giacomo Talluri & Foad H. Gandoman, 2021. "Smart Grid in China, EU, and the US: State of Implementation," Energies, MDPI, vol. 14(18), pages 1-16, September.
    5. Jiapeng Liu & Hao Yang & Shengjie Yu & Sen Wang & Yu Shang & Fan Yang, 2018. "Real-Time Transient Thermal Rating and the Calculation of Risk Level of Transmission Lines," Energies, MDPI, vol. 11(5), pages 1-14, May.
    6. Fan Yang & Kai Liu & Peng Cheng & Shaohua Wang & Xiaoyu Wang & Bing Gao & Yalin Fang & Rong Xia & Irfan Ullah, 2016. "The Coupling Fields Characteristics of Cable Joints and Application in the Evaluation of Crimping Process Defects," Energies, MDPI, vol. 9(11), pages 1-19, November.
    7. Xiansi Lou & Wei Chen & Chuangxin Guo, 2019. "Using the Thermal Inertia of Transmission Lines for Coping with Post-Contingency Overflows," Energies, MDPI, vol. 13(1), pages 1-23, December.
    8. Jian Hu & Xiaofu Xiong & Jing Chen & Wei Wang & Jian Wang, 2018. "Transient Temperature Calculation and Multi-Parameter Thermal Protection of Overhead Transmission Lines Based on an Equivalent Thermal Network," Energies, MDPI, vol. 12(1), pages 1-25, December.
    9. Diana Enescu & Pietro Colella & Angela Russo & Radu Florin Porumb & George Calin Seritan, 2021. "Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables," Energies, MDPI, vol. 14(9), pages 1-23, May.
    10. Francesca Capelli & Jordi-Roger Riba & Joan Pérez, 2016. "Three-Dimensional Finite-Element Analysis of the Short-Time and Peak Withstand Current Tests in Substation Connectors," Energies, MDPI, vol. 9(6), pages 1-16, May.
    11. Levente Rácz & Bálint Németh & Gábor Göcsei & Dimitar Zarchev & Valeri Mladenov, 2022. "Performance Analysis of a Dynamic Line Rating System Based on Project Experiences," Energies, MDPI, vol. 15(3), pages 1-11, January.
    12. Teresa Nogueira & José Magano & Ezequiel Sousa & Gustavo R. Alves, 2021. "The Impacts of Battery Electric Vehicles on the Power Grid: A Monte Carlo Method Approach," Energies, MDPI, vol. 14(23), pages 1-18, December.
    13. Yasir Yaqoob & Arjuna Marzuki & Ching-Ming Lai & Jiashen Teh, 2022. "Fuzzy Dynamic Thermal Rating System-Based Thermal Aging Model for Transmission Lines," Energies, MDPI, vol. 15(12), pages 1-23, June.
    14. Alberto Arroyo & Pablo Castro & Raquel Martinez & Mario Manana & Alfredo Madrazo & Ramón Lecuna & Antonio Gonzalez, 2015. "Comparison between IEEE and CIGRE Thermal Behaviour Standards and Measured Temperature on a 132-kV Overhead Power Line," Energies, MDPI, vol. 8(12), pages 1-12, December.
    15. Ying-Yi Hong, 2016. "Electric Power Systems Research," Energies, MDPI, vol. 9(10), pages 1-4, October.
    16. Ramitha Dissanayake & Akila Wijethunge & Janaka Wijayakulasooriya & Janaka Ekanayake, 2022. "Optimizing PV-Hosting Capacity with the Integrated Employment of Dynamic Line Rating and Voltage Regulation," Energies, MDPI, vol. 15(22), pages 1-19, November.
    17. Behzad Keyvani & Eoin Whelan & Eadaoin Doddy & Damian Flynn, 2023. "Indirect weather‐based approaches for increasing power transfer capabilities of electrical transmission networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
    18. Jeff Laninga & Ali Nasr Esfahani & Gevindu Ediriweera & Nathan Jacob & Behzad Kordi, 2023. "Monitoring Technologies for HVDC Transmission Lines," Energies, MDPI, vol. 16(13), pages 1-32, June.
    19. Qing Yang & Bo Zhang & Jiaquan Ran & Song Chen & Yanxiao He & Jian Sun, 2017. "Measurement of Line-to-Ground Capacitance in Distribution Network Considering Magnetizing Impedance’s Frequency Characteristic," Energies, MDPI, vol. 10(4), pages 1-14, April.
    20. Mengxia Wang & Mingqiang Wang & Jinxin Huang & Zhe Jiang & Jinyan Huang, 2018. "A Thermal Rating Calculation Approach for Wind Power Grid-Integrated Overhead Lines," Energies, MDPI, vol. 11(6), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1136-:d:503095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.