IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2423-d542459.html
   My bibliography  Save this article

Investigation and Practical Application of Silica Nanoparticles Composite Underwater Repairing Materials

Author

Listed:
  • Jingbiao Yang

    (School of Materials Science and Engineering, Central South University, Changsha 410083, China)

  • Shengxiang Deng

    (School of Mechanical and Automobile Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Hui Xu

    (Lab of Nano-Biology Technology, Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083, China)

  • Ye Zhao

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Changda Nie

    (School of Energy Science and Engineering, Central South University, Changsha 410083, China)

  • Yongju He

    (Lab of Nano-Biology Technology, Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083, China)

Abstract

Repairing materials are well-known to play an important role in rehabilitating and extending the service life for hydraulic concrete structures. However, current underwater repairing materials possess several problems, including insufficient bond tensile strength, inconsistency with the deformation of the old substrate, and insufficient underwater self-sealing ability. In the present paper, an experimental study was carried out to evaluate the influence of silica nanoparticles (SNs) on the properties of underwater composite-repairing materials. The underwater deformation, impermeability, bond tensile strength, and compressive strength of the SN-modified underwater composite-repairing materials were used as the properties’ evaluation indices. The results show that, within a certain range, the performance of the repairing material increase with increased SN percent. The deformability, impermeability grade, underwater bond tensile strength, and compressive strength of the SN-modified composite underwater repairing materials are 2.2%, 8, 2.91 MPa, and 115.87 MPa, respectively, when the mass ratio of the mortar, the curing agent and the SNs is 8:1:0.002. The proposed material is employed to repair the dam for a hydropower station in Guizhou province, China. Results show the seepage discharge is reduced by 8.6% when the dam is repaired. The annual average generating capacity is increased by 1.104 × 10 5 kWh. Meanwhile, CO 2 and NOx emissions are reduced by 1.049 × 10 5 and 220.8 kg annually, respectively.

Suggested Citation

  • Jingbiao Yang & Shengxiang Deng & Hui Xu & Ye Zhao & Changda Nie & Yongju He, 2021. "Investigation and Practical Application of Silica Nanoparticles Composite Underwater Repairing Materials," Energies, MDPI, vol. 14(9), pages 1-10, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2423-:d:542459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nazari, S. & Shahhoseini, O. & Sohrabi-Kashani, A. & Davari, S. & Paydar, R. & Delavar-Moghadam, Z., 2010. "Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants," Energy, Elsevier, vol. 35(7), pages 2992-2998.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Ludwik Golewski, 2022. "Combined Effect of Coal Fly Ash (CFA) and Nanosilica (nS) on the Strength Parameters and Microstructural Properties of Eco-Friendly Concrete," Energies, MDPI, vol. 16(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    2. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    3. Oliver, A. & Montero, G. & Montenegro, R. & Rodríguez, E. & Escobar, J.M. & Pérez-Foguet, A., 2013. "Adaptive finite element simulation of stack pollutant emissions over complex terrains," Energy, Elsevier, vol. 49(C), pages 47-60.
    4. Biglarian, Hassan & Abdollahi, Sina, 2022. "Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump," Energy, Elsevier, vol. 243(C).
    5. Yorgos Spanodimitriou & Giovanni Ciampi & Michelangelo Scorpio & Niloufar Mokhtari & Ainoor Teimoorzadeh & Roberta Laffi & Sergio Sibilio, 2022. "Passive Strategies for Building Retrofitting: Performances Analysis and Incentive Policies for the Iranian Scenario," Energies, MDPI, vol. 15(5), pages 1-22, February.
    6. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    7. Mohammad Alrbai & Sameer Al-Dahidi & Loiy Al-Ghussain & Hassan Hayajneh & Ali Alahmer, 2023. "A Sustainable Wind–Biogas Hybrid System for Remote Areas in Jordan: A Case Study of Mobile Hospital for a Zaatari Syrian Refugee Camp," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    8. He, Yongxiu & Liu, Yangyang & Wang, Jianhui & Xia, Tian & Zhao, Yushan, 2014. "Low-carbon-oriented dynamic optimization of residential energy pricing in China," Energy, Elsevier, vol. 66(C), pages 610-623.
    9. Yongxiu He & Yangyang Liu & Tian Xia & Min Du & Hongzhen Guo, 2014. "The Optimal Price Ratio of Typical Energy Sources in Beijing Based on the Computable General Equilibrium Model," Energies, MDPI, vol. 7(5), pages 1-24, April.
    10. Natalia dos Santos Renato & Augusto Cesar Laviola de Oliveira & Amanda Martins Teixeira Ervilha & Sarah Falchetto Antoniazzi & Julia Moltó & Juan Antonio Conesa & Alisson Carraro Borges, 2024. "Replacing Natural Gas with Biomethane from Sewage Treatment: Optimizing the Potential in São Paulo State, Brazil," Energies, MDPI, vol. 17(7), pages 1-11, March.
    11. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi & Alireza Nasseri & Lotfali Agheli, 2017. "Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach," Energies, MDPI, vol. 10(12), pages 1-29, December.
    12. Akpan, P.U. & Fuls, W.F., 2021. "Cycling of coal fired power plants: A generic CO2 emissions factor model for predicting CO2 emissions," Energy, Elsevier, vol. 214(C).
    13. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    14. Mazandarani, A. & Mahlia, T.M.I. & Chong, W.T. & Moghavvemi, M., 2011. "Fuel consumption and emission prediction by Iranian power plants until 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1575-1592, April.
    15. Diaz-Mendez, S.E. & Torres-Rodríguez, A.A. & Abatal, M. & Soberanis, M.A. Escalante & Bassam, A. & Pedraza-Basulto, G.K., 2018. "Economic, environmental and health co-benefits of the use of advanced control strategies for lighting in buildings of Mexico," Energy Policy, Elsevier, vol. 113(C), pages 401-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2423-:d:542459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.