IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2191-d536051.html
   My bibliography  Save this article

Performance Assessment of a Building-Integrated Photovoltaic Thermal System in a Mediterranean Climate—An Experimental Analysis Approach

Author

Listed:
  • Karol Bot

    (Laboratório Nacional de Energia e Geologia (LNEG), 1649-038 Lisbon, Portugal)

  • Laura Aelenei

    (Laboratório Nacional de Energia e Geologia (LNEG), 1649-038 Lisbon, Portugal)

  • Hélder Gonçalves

    (Laboratório Nacional de Energia e Geologia (LNEG), 1649-038 Lisbon, Portugal)

  • Maria da Glória Gomes

    (CERIS, Department of Civil Engineering, Architecture and Georesources (DECivil), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • Carlos Santos Silva

    (IN+, Center for Innovation, Technology and Policy Research /LARSyS, Department of Mechanical Engineering (DEM), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

Abstract

The experimental investigation of building-integrated photovoltaic thermal (BIPVT) solar systems is essential to characterise the operation of these elements under real conditions of use according to the climate and building type they pertain. BIPVT systems can increase and ensure energy performance and readiness without jeopardising the occupant comfort if correctly operated. The present work presents a case study’s experimental analysis composed of a BIPVT system for heat recovery located in a controlled test room. This work contribution focuses on the presentation of the obtained measured value results that correspond to the BIPVT main boundary conditions (weather and room characteristics) and the thermal behaviour and performance of the BIPVT system, located in the Solar XXI Building, a nZEB exposed to the mild Mediterranean climate conditions of Portugal.

Suggested Citation

  • Karol Bot & Laura Aelenei & Hélder Gonçalves & Maria da Glória Gomes & Carlos Santos Silva, 2021. "Performance Assessment of a Building-Integrated Photovoltaic Thermal System in a Mediterranean Climate—An Experimental Analysis Approach," Energies, MDPI, vol. 14(8), pages 1-30, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2191-:d:536051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    2. Jaewook Lee & Jeongsu Park & Hyung-Jo Jung & Jiyoung Park, 2017. "Renewable Energy Potential by the Application of a Building Integrated Photovoltaic and Wind Turbine System in Global Urban Areas," Energies, MDPI, vol. 10(12), pages 1-20, December.
    3. Gaur, Ankita & Tiwari, G.N., 2015. "Analytical expressions for temperature dependent electrical efficiencies of thin film BIOPVT systems," Applied Energy, Elsevier, vol. 146(C), pages 442-452.
    4. Burman, Esfand & Mumovic, Dejan & Kimpian, Judit, 2014. "Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings," Energy, Elsevier, vol. 77(C), pages 153-163.
    5. Smyth, M. & Pugsley, A. & Hanna, G. & Zacharopoulos, A. & Mondol, J. & Besheer, A. & Savvides, A., 2019. "Experimental performance characterisation of a Hybrid Photovoltaic/Solar Thermal Façade module compared to a flat Integrated Collector Storage Solar Water Heater module," Renewable Energy, Elsevier, vol. 137(C), pages 137-143.
    6. Debbarma, Mary & Sudhakar, K. & Baredar, Prashant, 2017. "Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1276-1288.
    7. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    8. Dehra, Himanshu, 2017. "An investigation on energy performance assessment of a photovoltaic solar wall under buoyancy-induced and fan-assisted ventilation system," Applied Energy, Elsevier, vol. 191(C), pages 55-74.
    9. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Cha, Seung Hyun, 2018. "An integrated model for estimating the techno-economic performance of the distributed solar generation system on building façades: Focused on energy demand and supply," Applied Energy, Elsevier, vol. 228(C), pages 1071-1090.
    10. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong, 2018. "Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates," Energy, Elsevier, vol. 142(C), pages 384-399.
    11. Edelenbosch, O.Y. & van Vuuren, D.P. & Blok, K. & Calvin, K. & Fujimori, S., 2020. "Mitigating energy demand sector emissions: The integrated modelling perspective," Applied Energy, Elsevier, vol. 261(C).
    12. Karol Bot & Laura Aelenei & Maria da Glória Gomes & Carlos Santos Silva, 2020. "Performance Assessment of a Building Integrated Photovoltaic Thermal System in Mediterranean Climate—A Numerical Simulation Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
    13. Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2016. "Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics," Renewable Energy, Elsevier, vol. 89(C), pages 743-756.
    14. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Ma, Tao, 2015. "Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes," Applied Energy, Elsevier, vol. 138(C), pages 572-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Pierro, Marco & Moser, David & Nižetić, Sandro & Karimi, Nader & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Building integrated photovoltaic/thermal technologies in Middle Eastern and North African countries: Current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Lijie & Ji, Jie & Cai, Jingyong & Ke, Wei & Tian, Xinyi & Yu, Bendong & Wang, Jun, 2021. "A hybrid PV thermal (water or air) wall system integrated with double air channel and phase change material: A continuous full-day seasonal experimental research," Renewable Energy, Elsevier, vol. 173(C), pages 596-613.
    2. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Xie, Lei & Wang, Xiliang & Wu, Jing, 2018. "Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season," Energy, Elsevier, vol. 165(PB), pages 326-342.
    5. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    6. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    8. Yu, Bendong & Hou, Jingxin & He, Wei & Liu, Shanshan & Hu, Zhongting & Ji, Jie & Chen, Hongbing & Xu, Gang, 2018. "Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification," Applied Energy, Elsevier, vol. 226(C), pages 365-380.
    9. Debbarma, Mary & Sudhakar, K. & Baredar, Prashant, 2017. "Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1276-1288.
    10. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    11. Visa, Ion & Moldovan, Macedon & Duta, Anca, 2019. "Novel triangle flat plate solar thermal collector for facades integration," Renewable Energy, Elsevier, vol. 143(C), pages 252-262.
    12. Wenjie Zhang & Kangyong Liu & Shengbin Ma & Tongdan Gong & Yingbo Zhao, 2021. "The Influence of Photovoltaic Cell Coverage Rate on the Thermal and Electric Performance of Semi-Transparent Crystalline Silicon Photovoltaic Windows Based on the Dynamic Power Coupling Model," Energies, MDPI, vol. 14(21), pages 1-14, November.
    13. Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2020. "Status, barriers and perspectives of building integrated photovoltaic systems," Energy, Elsevier, vol. 191(C).
    14. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    15. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    16. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    17. Zhou, Bochao & Pei, Jianzhong & Calautit, John Kaiser & Zhang, Jiupeng & Yong, Ling Xin & Pantua, Conrad Allan Jay, 2022. "Analysis of mechanical response and energy efficiency of a pavement integrated photovoltaic/thermal system (PIPVT)," Renewable Energy, Elsevier, vol. 194(C), pages 1-12.
    18. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    19. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    20. Suzana Domjan & Lenart Petek & Ciril Arkar & Sašo Medved, 2020. "Experimental Study on Energy Efficiency of Multi-Functional BIPV Glazed Façade Structure during Heating Season," Energies, MDPI, vol. 13(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2191-:d:536051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.