IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2071-d532482.html
   My bibliography  Save this article

Cooperatively Improving Data Center Energy Efficiency Based on Multi-Agent Deep Reinforcement Learning

Author

Listed:
  • Ce Chi

    (High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100095, China
    School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
    Current address: No. 6 South Kexueyuan Rd, Beijing 100190, China.)

  • Kaixuan Ji

    (High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100095, China
    School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
    Current address: No. 6 South Kexueyuan Rd, Beijing 100190, China.)

  • Penglei Song

    (Information Engineering College, Capital Normal University, Beijing 100048, China)

  • Avinab Marahatta

    (Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China)

  • Shikui Zhang

    (Information Engineering College, Capital Normal University, Beijing 100048, China)

  • Fa Zhang

    (High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100095, China
    Current address: No. 6 South Kexueyuan Rd, Beijing 100190, China.)

  • Dehui Qiu

    (Information Engineering College, Capital Normal University, Beijing 100048, China)

  • Zhiyong Liu

    (High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100095, China
    Current address: No. 6 South Kexueyuan Rd, Beijing 100190, China.)

Abstract

The problem of high power consumption in data centers is becoming more and more prominent. In order to improve the energy efficiency of data centers, cooperatively optimizing the energy of IT systems and cooling systems has become an effective way. In this paper, a model-free deep reinforcement learning (DRL)-based joint optimization method MAD3C is developed to overcome the high-dimensional state and action space problems of the data center energy optimization. A hybrid AC-DDPG cooperative multi-agent framework is devised for the improvement of the cooperation between the IT and cooling systems for further energy efficiency improvement. In the framework, a scheduling baseline comparison method is presented to enhance the stability of the framework. Meanwhile, an adaptive score is designed for the architecture in consideration of multi-dimensional resources and resource utilization improvement. Experiments show that our proposed approach can effectively reduce energy for data centers through the cooperative optimization while guaranteeing training stability and improving resource utilization.

Suggested Citation

  • Ce Chi & Kaixuan Ji & Penglei Song & Avinab Marahatta & Shikui Zhang & Fa Zhang & Dehui Qiu & Zhiyong Liu, 2021. "Cooperatively Improving Data Center Energy Efficiency Based on Multi-Agent Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-32, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2071-:d:532482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    2. Nicola Jones, 2018. "How to stop data centres from gobbling up the world’s electricity," Nature, Nature, vol. 561(7722), pages 163-166, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seppo Sierla & Heikki Ihasalo & Valeriy Vyatkin, 2022. "A Review of Reinforcement Learning Applications to Control of Heating, Ventilation and Air Conditioning Systems," Energies, MDPI, vol. 15(10), pages 1-25, May.
    2. Mahbod, Muhammad Haiqal Bin & Chng, Chin Boon & Lee, Poh Seng & Chui, Chee Kong, 2022. "Energy saving evaluation of an energy efficient data center using a model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    2. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    3. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    4. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    5. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    6. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    7. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    8. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    9. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    10. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    11. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    12. Ande Chang & Yuting Ji & Chunguang Wang & Yiming Bie, 2024. "CVDMARL: A Communication-Enhanced Value Decomposition Multi-Agent Reinforcement Learning Traffic Signal Control Method," Sustainability, MDPI, vol. 16(5), pages 1-17, March.
    13. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    14. Zhang, Yang & Yang, Qingyu & Li, Donghe & An, Dou, 2022. "A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility," Applied Energy, Elsevier, vol. 323(C).
    15. He, Jing & Liu, Xinglu & Duan, Qiyao & Chan, Wai Kin (Victor) & Qi, Mingyao, 2023. "Reinforcement learning for multi-item retrieval in the puzzle-based storage system," European Journal of Operational Research, Elsevier, vol. 305(2), pages 820-837.
    16. Holger Mohr & Katharina Zwosta & Dimitrije Markovic & Sebastian Bitzer & Uta Wolfensteller & Hannes Ruge, 2018. "Deterministic response strategies in a trial-and-error learning task," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-19, November.
    17. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    18. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    19. Timotei Lala & Darius-Pavel Chirla & Mircea-Bogdan Radac, 2021. "Model Reference Tracking Control Solutions for a Visual Servo System Based on a Virtual State from Unknown Dynamics," Energies, MDPI, vol. 15(1), pages 1-25, December.
    20. Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2071-:d:532482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.