IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004647.html
   My bibliography  Save this article

Reinforcement learning for data center energy efficiency optimization: A systematic literature review and research roadmap

Author

Listed:
  • Kahil, Hussain
  • Sharma, Shiva
  • Välisuo, Petri
  • Elmusrati, Mohammed

Abstract

With today’s challenges posed by climate change, global attention is increasingly focused on reducing energy consumption within sustainable communities. As significant energy consumers, data centers represent a crucial area for research in energy efficiency optimization. To address this issue, various algorithms have been employed to develop sophisticated solutions for data center systems. Recently, Reinforcement Learning (RL) and its advanced counterpart, Deep Reinforcement Learning (DRL), have demonstrated promising potential in improving data center energy efficiency. However, a comprehensive review of the deployment of these algorithms remains limited. In this systematic review, we explore the application of RL/DRL algorithms for optimizing data center energy efficiency, with a focus on optimizing the operation of cooling systems and Information and Communication Technology (ICT) processes, including task scheduling, resource allocation, virtual machine (VM) consolidation/placement, and network traffic control. Following the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) protocol, we provide a detailed overview of the methodologies and objectives of 65 identified studies, along with an in-depth analysis of their energy-related results. We also summarize key aspects of these studies, including benchmark comparisons, experimental setups, datasets, and implementation platforms. Additionally, we present a structured qualitative comparison of the Markov Decision Process (MDP) elements for joint optimization studies. Our findings highlight vital research gaps, including the lack of real-time validation for developed algorithms and the absence of multi-scale standardized metrics for reporting energy efficiency improvements. Furthermore, we propose joint optimization of multi-system objectives as a promising direction for future research.

Suggested Citation

  • Kahil, Hussain & Sharma, Shiva & Välisuo, Petri & Elmusrati, Mohammed, 2025. "Reinforcement learning for data center energy efficiency optimization: A systematic literature review and research roadmap," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004647
    DOI: 10.1016/j.apenergy.2025.125734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.