IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1620-d517031.html
   My bibliography  Save this article

Improvement of Criteria for Assessing the Energy Efficiency of Thermoelectric Refrigerators Used in Supply Chains

Author

Listed:
  • Sergiy Filin

    (Faculty of Maritime Technology and Transport, West Pomeranian University of Technology in Szczecin, Ave. Piastów 41, 71-065 Szczecin, Poland)

  • Ludmiła Filina-Dawidowicz

    (Faculty of Maritime Technology and Transport, West Pomeranian University of Technology in Szczecin, Ave. Piastów 41, 71-065 Szczecin, Poland)

Abstract

Refrigerators play an important role in perishable goods supply chains and are expected to operate efficiently. Thermoelectric refrigerators need specific criteria for assessing their energy efficiency. The existing criteria do not take into account the insulation properties of a refrigerator cabinet, which results in a low credibility of the assessment of energy parameters of thermoelectric coolers. The aim of the research was to develop and approve a new universal criterion for assessing the energy efficiency of stationary thermoelectric refrigerators used in supply chains. It was proposed to replace the known criterion of specific power consumption with a new indicator Pk, that takes into account the overall thermal transfer coefficient of the refrigerator cabinet. Based on experimental studies, the approval of the proposed indicator was carried out on the example of a comparative analysis of four thermoelectric refrigerators from different manufacturers. The indicator application resulted in changes in ranking of the examined refrigerators. It was found that the proposed criterion allows us to assess the effectiveness of a thermoelectric cold source more adequately, including the electric power supply and temperature control system. The research results may constitute guidelines for the design and application of standards for assessing the effectiveness of thermoelectric refrigerators.

Suggested Citation

  • Sergiy Filin & Ludmiła Filina-Dawidowicz, 2021. "Improvement of Criteria for Assessing the Energy Efficiency of Thermoelectric Refrigerators Used in Supply Chains," Energies, MDPI, vol. 14(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1620-:d:517031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min, Gao & Rowe, D.M., 2006. "Experimental evaluation of prototype thermoelectric domestic-refrigerators," Applied Energy, Elsevier, vol. 83(2), pages 133-152, February.
    2. Francis Onoroh & Mercy Ogbonnaya & Obiora Nnaemeka Ezenwa & Emmanuel Oluwafemi Odubiyi, 2020. "Experimental and parametric analysis of a thermoelectric refrigerator," International Journal of Innovation and Sustainable Development, Inderscience Enterprises Ltd, vol. 14(2), pages 125-141.
    3. Pourkiaei, Seyed Mohsen & Ahmadi, Mohammad Hossein & Sadeghzadeh, Milad & Moosavi, Soroush & Pourfayaz, Fathollah & Chen, Lingen & Pour Yazdi, Mohammad Arab & Kumar, Ravinder, 2019. "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afshari, Faraz & Mandev, Emre & Muratçobanoğlu, Burak & Yetim, Ali Fatih & Ceviz, Mehmet Akif, 2023. "Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger," Renewable Energy, Elsevier, vol. 207(C), pages 253-265.
    2. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    3. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    4. Hermes, Christian J.L. & Barbosa, Jader R., 2012. "Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers," Applied Energy, Elsevier, vol. 91(1), pages 51-58.
    5. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    6. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    7. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    8. Beltrán-Pitarch, Braulio & Maassen, Jesse & García-Cañadas, Jorge, 2021. "Comprehensive impedance spectroscopy equivalent circuit of a thermoelectric device which includes the internal thermal contact resistances," Applied Energy, Elsevier, vol. 299(C).
    9. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    10. Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
    11. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    12. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    13. Siviter, J. & Montecucco, A. & Knox, A.R., 2015. "Rankine cycle efficiency gain using thermoelectric heat pumps," Applied Energy, Elsevier, vol. 140(C), pages 161-170.
    14. Oswaldo Hideo Ando Junior & Nelson H. Calderon & Samara Silva De Souza, 2018. "Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery," Energies, MDPI, vol. 11(6), pages 1-13, June.
    15. Rui Miao & Xiaoou Hu & Yao Yu & Qifeng Zhang & Zhibin Lin & Abdulaziz Banawi & Ahmed Cherif Megri, 2021. "Experimental Study to Analyze Feasibility of a Novel Panelized Ground-Source Thermoelectric System for Building Space Heating and Cooling," Energies, MDPI, vol. 15(1), pages 1-17, December.
    16. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    17. Ahmed S. Alsaman & Ahmed A. Hassan & Ehab S. Ali & Ramy H. Mohammed & Alaa E. Zohir & Ayman M. Farid & Ayman M. Zakaria Eraqi & Hamdy H. El-Ghetany & Ahmed A. Askalany, 2022. "Hybrid Solar-Driven Desalination/Cooling Systems: Current Situation and Future Trend," Energies, MDPI, vol. 15(21), pages 1-25, October.
    18. Martínez, A. & Astrain, D. & Rodríguez, A., 2011. "Experimental and analytical study on thermoelectric self cooling of devices," Energy, Elsevier, vol. 36(8), pages 5250-5260.
    19. Silva, D.J. & Bordalo, B.D. & Pereira, A.M. & Ventura, J. & Araújo, J.P., 2012. "Solid state magnetic refrigerator," Applied Energy, Elsevier, vol. 93(C), pages 570-574.
    20. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1620-:d:517031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.