IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p805-d1031129.html
   My bibliography  Save this article

Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method

Author

Listed:
  • Zhaochun Shi

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Guohua Wang

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
    Chongqing Key Laboratory of Vehicle Emission and Economizing Energy, Chongqing 401122, China)

  • Chunli Liu

    (Chongqing Key Laboratory of Vehicle Emission and Economizing Energy, Chongqing 401122, China)

  • Qiang Lv

    (Chongqing Key Laboratory of Vehicle Emission and Economizing Energy, Chongqing 401122, China)

  • Baoli Gong

    (Chongqing Key Laboratory of Vehicle Emission and Economizing Energy, Chongqing 401122, China)

  • Yingchao Zhang

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Yuying Yan

    (Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

Abstract

Phase change material (PCM) is an effective thermal management method to improve the thermoelectric conversion performance of a system. PCM can not only absorb excessive thermal energy at high temperature to protect the thermoelectric module (TEM) and increase the maximum available temperature range, but also compensate for intermittent energy to extend the working time of the TEM. In the paper, the transient performance is improved by adding PCM to a traditional thermoelectric generator (TEG) system. Due to the low thermal conductivity of PCM, metal fins are used to improve the thermal conductivity of PCM. To achieve maximum efficiency of the TEG system, the Taguchi method is employed. Four factors are heat source thermal power, PCM type, height of the PCM box, and filling ratio of the PCM, respectively. The results show that heat source thermal power has the greatest effect, and PCM has the least effect on the conversion efficiency of the TEG system. Conversion efficiency from thermal to electricity is about 1.472% during 2300 s of the heating and cooling stages.

Suggested Citation

  • Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:805-:d:1031129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    2. Atouei, S. Ahmadi & Rezania, A. & Ranjbar, A.A. & Rosendahl, L.A., 2018. "Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation," Energy, Elsevier, vol. 156(C), pages 311-318.
    3. Pourkiaei, Seyed Mohsen & Ahmadi, Mohammad Hossein & Sadeghzadeh, Milad & Moosavi, Soroush & Pourfayaz, Fathollah & Chen, Lingen & Pour Yazdi, Mohammad Arab & Kumar, Ravinder, 2019. "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, Elsevier, vol. 186(C).
    4. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "Parametric study of a thermoelectric module used for both power generation and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 542-552.
    5. Tu, Yubin & Zhu, Wei & Lu, Tianqi & Deng, Yuan, 2017. "A novel thermoelectric harvester based on high-performance phase change material for space application," Applied Energy, Elsevier, vol. 206(C), pages 1194-1202.
    6. Chen, Wei-Hsin & Huang, Shih-Rong & Lin, Yu-Li, 2015. "Performance analysis and optimum operation of a thermoelectric generator by Taguchi method," Applied Energy, Elsevier, vol. 158(C), pages 44-54.
    7. Ma, Ting & Lu, Xing & Pandit, Jaideep & Ekkad, Srinath V. & Huxtable, Scott T. & Deshpande, Samruddhi & Wang, Qiu-wang, 2017. "Numerical study on thermoelectric–hydraulic performance of a thermoelectric power generator with a plate-fin heat exchanger with longitudinal vortex generators," Applied Energy, Elsevier, vol. 185(P2), pages 1343-1354.
    8. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    9. Luo, Ding & Yan, Yuying & Wang, Ruochen & Zhou, Weiqi, 2021. "Numerical investigation on the dynamic response characteristics of a thermoelectric generator module under transient temperature excitations," Renewable Energy, Elsevier, vol. 170(C), pages 811-823.
    10. Pandey, Navdeep & Murugesan, K. & Thomas, H.R., 2017. "Optimization of ground heat exchangers for space heating and cooling applications using Taguchi method and utility concept," Applied Energy, Elsevier, vol. 190(C), pages 421-438.
    11. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery," Applied Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Ding & Wang, Ruochen & Yan, Yuying & Yu, Wei & Zhou, Weiqi, 2021. "Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery," Applied Energy, Elsevier, vol. 297(C).
    2. Luo, Ding & Wang, Ruochen & Yan, Yuying & Sun, Zeyu & Zhou, Weiqi & Ding, Renkai, 2021. "Comparison of different fluid-thermal-electric multiphysics modeling approaches for thermoelectric generator systems," Renewable Energy, Elsevier, vol. 180(C), pages 1266-1277.
    3. Luo, Ding & Yan, Yuying & Li, Ying & Wang, Ruochen & Cheng, Shan & Yang, Xuelin & Ji, Dongxu, 2023. "A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems," Applied Energy, Elsevier, vol. 332(C).
    4. Lan, Song & Li, Qingshan & Guo, Xin & Wang, Shukun & Chen, Rui, 2023. "Fuel saving potential analysis of bifunctional vehicular waste heat recovery system using thermoelectric generator and organic Rankine cycle," Energy, Elsevier, vol. 263(PB).
    5. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Ge, Minghui & Xie, Liyao & Liu, Liansheng, 2021. "Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation," Applied Energy, Elsevier, vol. 304(C).
    6. Luo, Ding & Sun, Zeyu & Wang, Ruochen, 2022. "Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery," Energy, Elsevier, vol. 238(PB).
    7. Yin, Tao & Li, Zhen-Ming & Peng, Peng & Liu, Wei & Shao, Yu-Ying & He, Zhi-Zhu, 2021. "Performance analysis and design optimization of a compact thermoelectric generator with T-Shaped configuration," Energy, Elsevier, vol. 229(C).
    8. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    9. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "Performance optimization of a converging thermoelectric generator system via multiphysics simulations," Energy, Elsevier, vol. 204(C).
    10. Cheng-You Chen & Kung-Wen Du & Yi-Cheng Chung & Chun-I Wu, 2024. "Advancements in Thermoelectric Generator Design: Exploring Heat Exchanger Efficiency and Material Properties," Energies, MDPI, vol. 17(2), pages 1-25, January.
    11. Wang, Jun & Song, Xiangxiang & Ni, Qiqiang & Li, Xingjun & Meng, Qingtian, 2021. "Experimental investigation on the influence of phase change material on the output performance of thermoelectric generator," Renewable Energy, Elsevier, vol. 177(C), pages 884-894.
    12. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    13. Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
    14. Meng, Jing-Hui & Gao, De-Yang & Liu, Yan & Zhang, Kai & Lu, Gui, 2022. "Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance," Energy, Elsevier, vol. 245(C).
    15. Wenlong Yang & Wenchao Zhu & Yang Yang & Liang Huang & Ying Shi & Changjun Xie, 2022. "Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods," Energies, MDPI, vol. 15(6), pages 1-21, March.
    16. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Liang, Zhaojun & Liang, Yifan & Li, Yanzhe, 2019. "Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery," Applied Energy, Elsevier, vol. 239(C), pages 425-433.
    17. Zhu, Xingzhuang & Zuo, Zhengxing & Wang, Wei & Jia, Boru & Zhan, Tianzhuo, 2023. "Experimental research and optimization of a thermoelectric generator excited by pulsed combustion mode under limited heat dissipation for combined heat and power supply," Applied Energy, Elsevier, vol. 349(C).
    18. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ren, Fengsheng & Yang, Yue & Ma, Bijian & Zhu, Yonggang, 2023. "Performance optimization for a novel two-stage thermoelectric generator with different PCMs embedding modes," Energy, Elsevier, vol. 281(C).
    19. Ma, Xiaonan & Shu, Gequn & Tian, Hua & Xu, Wen & Chen, Tianyu, 2019. "Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization," Applied Energy, Elsevier, vol. 248(C), pages 614-625.
    20. Wang, Z.H. & Ma, Y.J. & Tang, G.H. & Zhang, Hu & Ji, F. & Sheng, Q., 2023. "Integration of thermal insulation and thermoelectric conversion embedded with phase change materials," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:805-:d:1031129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.