IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1113-d502318.html
   My bibliography  Save this article

Advanced Monitoring and Control System for Virtual Power Plants for Enabling Customer Engagement and Market Participation

Author

Listed:
  • Behnaz Behi

    (Discipline of Electrical Engineering, Energy and Physics, Murdoch University, Perth, WA 6150, Australia)

  • Ali Arefi

    (Discipline of Electrical Engineering, Energy and Physics, Murdoch University, Perth, WA 6150, Australia)

  • Philip Jennings

    (Discipline of Electrical Engineering, Energy and Physics, Murdoch University, Perth, WA 6150, Australia)

  • Arian Gorjy

    (Yaran Property Group, Perth, WA 6151, Australia)

  • Almantas Pivrikas

    (Discipline of Electrical Engineering, Energy and Physics, Murdoch University, Perth, WA 6150, Australia)

Abstract

To integrate large-scale renewable energy into energy systems, an effective participation from private investors and active customer engagement are essential. Virtual power plants (VPPs) are a very promising approach. To realize this engagement, an efficient monitoring and control system needs to be implemented for the VPP to be flexible, scalable, secure, and cost-effective. In this paper, a realistic VPP in Western Australia is studied, comprising 67 dwellings, including a 810 kW rooftop solar photovoltaic (PV) system, a 700 kWh vanadium redox flow battery (VRFB), a heat pump hot water system (HWS), an electric vehicle (EV) charging station, and demand management mechanisms. The practical and detailed concept design of the monitoring and control system for EEBUS-enabled appliances, and also for the PV and VRFB system, with smart inverters, is proposed. In addition, a practical fog-based storage and computing system is developed to enable the VPP owner to manage the PV, VRFB, and EV charging station for maximizing the benefit to the customers and the VPP owner. Further, the proposed cloud-based applications enable customers to participate in gamified demand response programs for increasing the level of their engagement while satisfying their comfort level. All proposed systems and architecture in this paper have the capability of being implemented fully and relevant references for practical devices are given where necessary.

Suggested Citation

  • Behnaz Behi & Ali Arefi & Philip Jennings & Arian Gorjy & Almantas Pivrikas, 2021. "Advanced Monitoring and Control System for Virtual Power Plants for Enabling Customer Engagement and Market Participation," Energies, MDPI, vol. 14(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1113-:d:502318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prabatha, Tharindu & Karunathilake, Hirushie & Mohammadpour Shotorbani, Amin & Sadiq, Rehan & Hewage, Kasun, 2021. "Community-level decentralized energy system planning under uncertainty: A comparison of mathematical models for strategy development," Applied Energy, Elsevier, vol. 283(C).
    2. Behnaz Behi & Ali Baniasadi & Ali Arefi & Arian Gorjy & Philip Jennings & Almantas Pivrikas, 2020. "Cost–Benefit Analysis of a Virtual Power Plant Including Solar PV, Flow Battery, Heat Pump, and Demand Management: A Western Australian Case Study," Energies, MDPI, vol. 13(10), pages 1-24, May.
    3. Loßner, Martin & Böttger, Diana & Bruckner, Thomas, 2017. "Economic assessment of virtual power plants in the German energy market — A scenario-based and model-supported analysis," Energy Economics, Elsevier, vol. 62(C), pages 125-138.
    4. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    5. Terreros, O. & Spreitzhofer, J. & Basciotti, D. & Schmidt, R.R. & Esterl, T. & Pober, M. & Kerschbaumer, M. & Ziegler, M., 2020. "Electricity market options for heat pumps in rural district heating networks in Austria," Energy, Elsevier, vol. 196(C).
    6. Hany Elgamal, Ahmed & Kocher-Oberlehner, Gudrun & Robu, Valentin & Andoni, Merlinda, 2019. "Optimization of a multiple-scale renewable energy-based virtual power plant in the UK," Applied Energy, Elsevier, vol. 256(C).
    7. Emilio Ghiani & Andrea Giordano & Andrea Nieddu & Luca Rosetti & Fabrizio Pilo, 2019. "Planning of a Smart Local Energy Community: The Case of Berchidda Municipality (Italy)," Energies, MDPI, vol. 12(24), pages 1-14, December.
    8. Kody T. Ponds & Ali Arefi & Ali Sayigh & Gerard Ledwich, 2018. "Aggregator of Demand Response for Renewable Integration and Customer Engagement: Strengths, Weaknesses, Opportunities, and Threats," Energies, MDPI, vol. 11(9), pages 1-20, September.
    9. Moreno, Blanca & Díaz, Guzmán, 2019. "The impact of virtual power plant technology composition on wholesale electricity prices: A comparative study of some European Union electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 100-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Gulotta & Edoardo Daccò & Alessandro Bosisio & Davide Falabretti, 2023. "Opening of Ancillary Service Markets to Distributed Energy Resources: A Review," Energies, MDPI, vol. 16(6), pages 1-25, March.
    2. Khalil Gholami & Behnaz Behi & Ali Arefi & Philip Jennings, 2022. "Grid-Forming Virtual Power Plants: Concepts, Technologies and Advantages," Energies, MDPI, vol. 15(23), pages 1-26, November.
    3. Behnaz Behi & Philip Jennings & Ali Arefi & Ali Azizivahed & Almantas Pivrikas & S. M. Muyeen & Arian Gorjy, 2023. "A Robust Participation in the Load Following Ancillary Service and Energy Markets for a Virtual Power Plant in Western Australia," Energies, MDPI, vol. 16(7), pages 1-20, March.
    4. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behnaz Behi & Ali Baniasadi & Ali Arefi & Arian Gorjy & Philip Jennings & Almantas Pivrikas, 2020. "Cost–Benefit Analysis of a Virtual Power Plant Including Solar PV, Flow Battery, Heat Pump, and Demand Management: A Western Australian Case Study," Energies, MDPI, vol. 13(10), pages 1-24, May.
    2. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    3. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements," Energies, MDPI, vol. 14(4), pages 1-14, February.
    5. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    6. Lygnerud, Kristina & Ottosson, Jonas & Kensby, Johan & Johansson, Linnea, 2021. "Business models combining heat pumps and district heating in buildings generate cost and emission savings," Energy, Elsevier, vol. 234(C).
    7. Michal Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyla & Jarosław Szymańda & Przemysław Janik, 2020. "A Case Study on Power Quality in a Virtual Power Plant: Long Term Assessment and Global Index Application," Energies, MDPI, vol. 13(24), pages 1-20, December.
    8. Natalia Naval & Jose M. Yusta, 2020. "Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System under a Renewable Virtual Power Plant Model," Energies, MDPI, vol. 13(11), pages 1-21, June.
    9. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    10. Guntram Pressmair & Christof Amann & Klemens Leutgöb, 2021. "Business Models for Demand Response: Exploring the Economic Limits for Small- and Medium-Sized Prosumers," Energies, MDPI, vol. 14(21), pages 1-28, October.
    11. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Khalil Gholami & Behnaz Behi & Ali Arefi & Philip Jennings, 2022. "Grid-Forming Virtual Power Plants: Concepts, Technologies and Advantages," Energies, MDPI, vol. 15(23), pages 1-26, November.
    13. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    14. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    15. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    16. Langer, Lissy & Volling, Thomas, 2022. "A reinforcement learning approach to home energy management for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 327(C).
    17. Sourav Khanna & Victor Becerra & Adib Allahham & Damian Giaouris & Jamie M. Foster & Keiron Roberts & David Hutchinson & Jim Fawcett, 2020. "Demand Response Model Development for Smart Households Using Time of Use Tariffs and Optimal Control—The Isle of Wight Energy Autonomous Community Case Study," Energies, MDPI, vol. 13(3), pages 1-27, January.
    18. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    19. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    20. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1113-:d:502318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.