IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p271-d475600.html
   My bibliography  Save this article

Development of an Optimal Start Control Strategy for a Variable Refrigerant Flow (VRF) System

Author

Listed:
  • Yusung Lee

    (School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Woohyun Kim

    (School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea)

Abstract

In this study, an optimal control strategy for the variable refrigerant flow (VRF) system is developed using a data-driven model and on-site data to save the building energy. Three data-based models are developed to improve the on-site applicability. The presented models are used to determine the length of time required to bring each zone from its current temperature to the set point. The existing data are used to evaluate and validated the predictive performance of three data-based models. Experiments are conducted using three outdoor units and eight indoor units on site. The experimental test is performed to validate the performance of proposed optimal control by comparing between conventional and optimal control methods. Then, the ability to save energy wasted for maintaining temperature after temperature reaches the set points is evaluated through the comparison of energy usage. Given these results, 30.5% of energy is saved on average for each outdoor unit and the proposed optimal control strategy makes the zones comfortable.

Suggested Citation

  • Yusung Lee & Woohyun Kim, 2021. "Development of an Optimal Start Control Strategy for a Variable Refrigerant Flow (VRF) System," Energies, MDPI, vol. 14(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:271-:d:475600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    2. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    3. Tang, Rui & Wang, Shengwei & Shan, Kui & Cheung, Howard, 2018. "Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting," Energy, Elsevier, vol. 151(C), pages 771-781.
    4. Ye, Hong & Long, Linshuang & Zhang, Haitao & Gao, Yanfeng, 2014. "The energy saving index and the performance evaluation of thermochromic windows in passive buildings," Renewable Energy, Elsevier, vol. 66(C), pages 215-221.
    5. Keith Burnard & Sankar Bhattacharya, 2011. "Power Generation from Coal: Ongoing Developments and Outlook," IEA Energy Papers 2011/14, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Hanna Koshlak & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) Systems Designing to Forecast Onsite Operation—Part 2: Phenomenological Simulation to Recoup Refrigeration Energy," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Rima Aridi & Jalal Faraj & Samer Ali & Mostafa Gad El-Rab & Thierry Lemenand & Mahmoud Khaled, 2021. "Energy Recovery in Air Conditioning Systems: Comprehensive Review, Classifications, Critical Analysis, and Potential Recommendations," Energies, MDPI, vol. 14(18), pages 1-31, September.
    3. Mykola Radchenko & Andrii Radchenko & Eugeniy Trushliakov & Anatoliy Pavlenko & Roman Radchenko, 2023. "Advanced Method of Variable Refrigerant Flow (VRF) System Design to Forecast on Site Operation—Part 3: Optimal Solutions to Minimize Sizes," Energies, MDPI, vol. 16(5), pages 1-18, March.
    4. Kittiwoot Sutthivirode & Tongchana Thongtip, 2022. "Experimental Determination of an Optimal Performance Map of a Steam Ejector Refrigeration System," Energies, MDPI, vol. 15(12), pages 1-19, June.
    5. San Jin & Chanuk Lee & Dongsu Kim & Donghoon Lee & Sunglok Do, 2022. "Indoor Thermal Environment and Energy Characteristics with Varying Cooling System Capacity and Restart Time," Sustainability, MDPI, vol. 14(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    2. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    3. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    4. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    5. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    6. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
    7. Wang, Yang & Kuckelkorn, Jens & Li, Daoliang & Du, Jiangtao, 2018. "Evaluation on distributed renewable energy system integrated with a Passive House building using a new energy performance index," Energy, Elsevier, vol. 161(C), pages 81-89.
    8. Tullio de Rubeis & Annamaria Ciccozzi & Letizia Giusti & Dario Ambrosini, 2022. "The 3D Printing Potential for Heat Flow Optimization: Influence of Block Geometries on Heat Transfer Processes," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    9. Rosaura Castrillón Mendoza & Javier M. Rey Hernández & Eloy Velasco Gómez & Julio F. San José Alonso & Francisco J. Rey Martínez, 2018. "Analysis of the Methodology to Obtain Several Key Indicators Performance (KIP), by Energy Retrofitting of the Actual Building to the District Heating Fuelled by Biomass, Focusing on nZEB Goal: Case of," Energies, MDPI, vol. 12(1), pages 1-20, December.
    10. Kuo, Cheng-Chien, 2009. "Reactive energy scheduling using bi-objective programming with modified particle swarm optimization," Energy, Elsevier, vol. 34(6), pages 804-815.
    11. Zhao, Lu-Tao & Liu, Zhao-Ting & Cheng, Lei, 2021. "How will China's coal industry develop in the future? A quantitative analysis with policy implications," Energy, Elsevier, vol. 235(C).
    12. Kusiak, Andrew & Li, Mingyang, 2010. "Reheat optimization of the variable-air-volume box," Energy, Elsevier, vol. 35(5), pages 1997-2005.
    13. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    14. Chenari, Behrang & Dias Carrilho, João & Gameiro da Silva, Manuel, 2016. "Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1426-1447.
    15. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    16. Junqi Wang & Rundong Liu & Linfeng Zhang & Hussain Syed ASAD & Erlin Meng, 2019. "Triggering Optimal Control of Air Conditioning Systems by Event-Driven Mechanism: Comparing Direct and Indirect Approaches," Energies, MDPI, vol. 12(20), pages 1-20, October.
    17. Wang, Xia & Ding, Chao & Zhou, Mao & Cai, Weiguang & Ma, Xianrui & Yuan, Jiachen, 2023. "Assessment of space heating consumption efficiency based on a household survey in the hot summer and cold winter climate zone in China," Energy, Elsevier, vol. 274(C).
    18. Shi, Xing, 2011. "Design optimization of insulation usage and space conditioning load using energy simulation and genetic algorithm," Energy, Elsevier, vol. 36(3), pages 1659-1667.
    19. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    20. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:271-:d:475600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.