IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8326-d699424.html
   My bibliography  Save this article

Economic Evaluation of an Ammonia-Fueled Ammonia Carrier Depending on Methods of Ammonia Fuel Storage

Author

Listed:
  • Youngkyun Seo

    (Offshore Industries R&BD Center, Korea Research Institute of Ships & Ocean Engineering, 1350 Geojebuk-ro, Jangmok-myeon, Geoje-si 53201, Gyeongsangnam-do, Korea)

  • Seongjong Han

    (Offshore Industries R&BD Center, Korea Research Institute of Ships & Ocean Engineering, 1350 Geojebuk-ro, Jangmok-myeon, Geoje-si 53201, Gyeongsangnam-do, Korea)

Abstract

This study proposed two concepts for ammonia fuel storage for an ammonia-fueled ammonia carrier and evaluated these concepts in terms of economics. The first concept was to use ammonia in the cargo tank as fuel and the second concept was to install an additional independent fuel tank in the vessel. When more fuel tanks were installed, there was no cargo loss. However, there were extra costs for fuel tanks. The target ship was an 84,000 m 3 ammonia carrier (very large gas carrier, VLGC). It traveled from Kuwait to South Korea. The capacity of fuel tanks was 4170 m 3 , which is the required amount for the round trip. This study conducted an economic evaluation to compare the two proposed concepts. Profits were estimated based on sales and life cycle cost (LCC). Results showed that sales were USD 1223 million for the first concept and USD 1287 million for the second concept. Profits for the first and second concepts were USD 684.3 million and USD 739.5 million, respectively. The second concept showed a USD 53.1 million higher profit than the first concept. This means that the second concept, which installed additional independent fuel tanks was better than the first concept in terms of economics. Sensitivity analysis was performed to investigate the influence of given parameters on the results. When the ammonia fuel price was changed by ±25%, there was a 15% change in the profits and if the ammonia (transport) fee was changed by ±25%, there was a 45% change in the profits. The ammonia fuel price and ammonia (cargo) transport fee had a substantial influence on the business of ammonia carriers.

Suggested Citation

  • Youngkyun Seo & Seongjong Han, 2021. "Economic Evaluation of an Ammonia-Fueled Ammonia Carrier Depending on Methods of Ammonia Fuel Storage," Energies, MDPI, vol. 14(24), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8326-:d:699424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Obara, Shin'ya, 2019. "Energy and exergy flows of a hydrogen supply chain with truck transportation of ammonia or methyl cyclohexane," Energy, Elsevier, vol. 174(C), pages 848-860.
    2. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    2. Richard P. van Leeuwen & Annelies E. Boerman & Edmund W. Schaefer & Gerwin Hoogsteen & Yashar S. Hajimolana, 2022. "Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs," Energies, MDPI, vol. 15(6), pages 1-22, March.
    3. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    4. Namsu Kim & Minjung Lee & Juwon Park & Jeongje Park & Taesong Lee, 2022. "A Comparative Study of NO x Emission Characteristics in a Fuel Staging and Air Staging Combustor Fueled with Partially Cracked Ammonia," Energies, MDPI, vol. 15(24), pages 1-15, December.
    5. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
    6. Fengyuan Yan & Xiaolong Han & Qianwei Cheng & Yamin Yan & Qi Liao & Yongtu Liang, 2022. "Scenario-Based Comparative Analysis for Coupling Electricity and Hydrogen Storage in Clean Oilfield Energy Supply System," Energies, MDPI, vol. 15(6), pages 1-28, March.
    7. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    8. Talal Yusaf & K. Kadirgama & Steve Hall & Louis Fernandes, 2022. "The Future of Sustainable Aviation Fuels, Challenges and Solutions," Energies, MDPI, vol. 15(21), pages 1-4, November.
    9. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Kim, Tae-Woo & Lee, Eun-Han & Byun, Segi & Seo, Doo-Won & Hwang, Hyo-Jung & Yoon, Hyung-Chul & Kim, Hansung & Ryi, Shin-Kun, 2022. "Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition," Energy, Elsevier, vol. 260(C).
    11. Victor N. Sagel & Kevin H. R. Rouwenhorst & Jimmy A. Faria, 2022. "Renewable Electricity Generation in Small Island Developing States: The Effect of Importing Ammonia," Energies, MDPI, vol. 15(9), pages 1-18, May.
    12. Theo Notteboom & Hercules Haralambides, 2023. "Seaports as green hydrogen hubs: advances, opportunities and challenges in Europe," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 1-27, March.
    13. Nadaleti, Willian Cézar & Cardozo, Emanuélle & Bittencourt Machado, Jones & Maximilla Pereira, Peterson & Costa dos Santos, Maele & Gomes de Souza, Eduarda & Haertel, Paula & Kunde Correa, Erico & Vie, 2023. "Hydrogen and electricity potential generation from rice husks and persiculture biomass in Rio Grande do Sul, Brazil," Renewable Energy, Elsevier, vol. 216(C).
    14. Azarpour, Abbas & Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zendehboudi, Sohrab, 2022. "Systematic energy and exergy assessment of a hydropurification process: Theoretical and practical insights," Energy, Elsevier, vol. 239(PC).
    15. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    16. Egerer, Jonas & Grimm, Veronika & Niazmand, Kiana & Runge, Philipp, 2023. "The economics of global green ammonia trade – “Shipping Australian wind and sunshine to Germany”," Applied Energy, Elsevier, vol. 334(C).
    17. Huaguang Yan & Wenda Zhang & Jiandong Kang & Tiejiang Yuan, 2023. "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China," Energies, MDPI, vol. 16(13), pages 1-21, June.
    18. Nguyen Van Duc Long & Le Cao Nhien & Moonyong Lee, 2023. "Advanced Technologies in Hydrogen Revolution," Energies, MDPI, vol. 16(5), pages 1-4, February.
    19. Haifeng Liu & Jeffrey Dankwa Ampah & Yang Zhao & Xingyu Sun & Linxun Xu & Xueli Jiang & Shuaishuai Wang, 2022. "A Perspective on the Overarching Role of Hydrogen, Ammonia, and Methanol Carbon-Neutral Fuels towards Net Zero Emission in the Next Three Decades," Energies, MDPI, vol. 16(1), pages 1-15, December.
    20. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8326-:d:699424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.