IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8074-d693830.html
   My bibliography  Save this article

Application of Time-Voltage Characteristics in Overcurrent Scheme to Reduce Arc-Flash Incident Energy for Safety and Reliability of Microgrid Protection

Author

Listed:
  • Feras Alasali

    (Department of Electrical Engineering, Faculty of Engineering, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan)

  • Saad M. Saad

    (College of Electrical and Electronics Technology, Algwarsha, Benghazi, Libya)

  • Naser El-Naily

    (College of Electrical and Electronics Technology, Algwarsha, Benghazi, Libya)

  • Anis Layas

    (College of Electrical and Electronics Technology, Algwarsha, Benghazi, Libya)

  • Abdelsalam Elhaffar

    (Department of Electrical and Computer Engineering, Sultan Qaboos University, Muscat 123, Oman
    Department of Electrical Engineering, University of Benghazi, Benghazi, Libya)

  • Tawfiq Hussein

    (Department of Electrical Engineering, University of Benghazi, Benghazi, Libya)

  • Faisal A. Mohamed

    (Authority of Natural Science Research and Technology, Tripoli, Libya)

Abstract

The interconnection between diverse Distribution Generations (DGs) that utilize various technologies and complex structure of networks are the most characteristic of modern Distribution Networks (DN). The wide adoption of DGs considerably affects the power flow dynamics in the DN and consequently the fault characteristics. The excessive level of fault currents can pose risks of heat (high temperature) and pressure in accordance to Arc Flash (AF) incident energy in microgrids. This research studies the relationship between AF severity and the solving of coordination problem of Overcurrent Relays (OCRs) in DN, and introduces a novel equation that considers the AF qualities in solving the coordination problem for OCRs. In this study, a novel optimization problem, the AF severity with the optimal coordination of OCRs in DN is presented and the Water Cycle Optimization Method (WCOM) is employed to find the best combination of the OCR’s settings in the DN while considering the AF induced energy. The proposed optimization approach and the novel equation are evaluated with an IEC microgrid and compared with the conventional protection method and Particle Swarm Optimization (PSO) used in optimizing the coordination of OCR in the DN. The optimal settings of the OCR scheme are achieved and examined on the modified IEC microgrid benchmark system. In order to verify the result, an industrial simulation package (ETAP) and OCR (GE Multiin, model-750/760) was used in this work.

Suggested Citation

  • Feras Alasali & Saad M. Saad & Naser El-Naily & Anis Layas & Abdelsalam Elhaffar & Tawfiq Hussein & Faisal A. Mohamed, 2021. "Application of Time-Voltage Characteristics in Overcurrent Scheme to Reduce Arc-Flash Incident Energy for Safety and Reliability of Microgrid Protection," Energies, MDPI, vol. 14(23), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8074-:d:693830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baziar, Aliasghar & Kavousi-Fard, Abdollah, 2013. "Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices," Renewable Energy, Elsevier, vol. 59(C), pages 158-166.
    2. Khaled Nusair & Feras Alasali, 2020. "Optimal Power Flow Management System for a Power Network with Stochastic Renewable Energy Resources Using Golden Ratio Optimization Method," Energies, MDPI, vol. 13(14), pages 1-46, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    2. Wen, Xin & Abbes, Dhaker & Francois, Bruno, 2021. "Modeling of photovoltaic power uncertainties for impact analysis on generation scheduling and cost of an urban micro grid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 116-128.
    3. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    4. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    5. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    6. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    7. Cheng, Yu-Shan & Chuang, Man-Tsai & Liu, Yi-Hua & Wang, Shun-Chung & Yang, Zong-Zhen, 2016. "A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint," Renewable Energy, Elsevier, vol. 88(C), pages 58-72.
    8. Lombardi, P. & Sokolnikova, T. & Suslov, K. & Voropai, N. & Styczynski, Z.A., 2016. "Isolated power system in Russia: A chance for renewable energies?," Renewable Energy, Elsevier, vol. 90(C), pages 532-541.
    9. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    10. Mirsaeidi, Sohrab & Said, Dalila Mat & Mustafa, Mohammad Wazir & Habibuddin, Mohammad Hafiz & Ghaffari, Kimia, 2016. "Fault location and isolation in micro-grids using a digital central protection unit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1-17.
    11. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    12. Grimm, Veronika & Grübel, Julia & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2020. "Storage investment and network expansion in distribution networks: The impact of regulatory frameworks," Applied Energy, Elsevier, vol. 262(C).
    13. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. SoltaniNejad Farsangi, Alireza & Hadayeghparast, Shahrzad & Mehdinejad, Mehdi & Shayanfar, Heidarali, 2018. "A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs," Energy, Elsevier, vol. 160(C), pages 257-274.
    15. Bolanos, Jose A., 2019. "Energy, uncertainty, and entrepreneurship: John D Rockefeller’s sequential approach to transaction costs management in the early oil industry," LSE Research Online Documents on Economics 100852, London School of Economics and Political Science, LSE Library.
    16. Kasaei, Mohammad Javad & Gandomkar, Majid & Nikoukar, Javad, 2017. "Optimal management of renewable energy sources by virtual power plant," Renewable Energy, Elsevier, vol. 114(PB), pages 1180-1188.
    17. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    19. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    20. Olukorede Tijani Adenuga & Senthil Krishnamurthy, 2023. "Economic Power Dispatch of a Grid-Tied Photovoltaic-Based Energy Management System: Co-Optimization Approach," Mathematics, MDPI, vol. 11(15), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8074-:d:693830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.