IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7936-d688598.html
   My bibliography  Save this article

Sustainable Mobility and the Smart City: A Vision of the City of the Future: The Case Study of Cracow (Poland)

Author

Listed:
  • Edyta Bielińska-Dusza

    (Department of Strategic Analysis, Cracow University of Economics, 31-570 Cracow, Poland)

  • Monika Hamerska

    (Department of International Management, Cracow University of Economics, 31-570 Cracow, Poland)

  • Agnieszka Żak

    (Department of International Management, Cracow University of Economics, 31-570 Cracow, Poland)

Abstract

The vision of the smart city is inextricably linked with the concepts of intelligent transport, sustainable mobility and managerial decision making. Cities of the future not only entail the use of new technology, but also increasingly the interpenetration of technological and social aspects, with the simultaneous involvement of urban space users in the creation of such technologies. This provides an opportunity to introduce desired changes and create a more balanced space with a higher quality of life and improved energy efficiency. The article discusses the concepts of sustainable development and sustainable mobility with a particular emphasis on issues related to the smart city. The authors reviewed the various smart city solutions that have been implemented in the field of urban transport in Cracow, whose authorities have taken steps over the last few years to make the city smarter and more modern. The aim of the research was to assess the contribution made by smart city solutions to improving the attractiveness and reliability of public transport in Poland’s second-largest city. The undoubted added value of this analysis is the application of the Structural Equation Modeling (SEM) method to evaluate the implemented solutions. It should be pointed out that such an analysis constitutes a new approach in this area. Until now, these models have been used to assess consumer behavior. The results showed that some of the implemented intelligent solutions increase the attractiveness of public transport in Cracow, but this does not square with users’ assessment of reliability. According to users, ecological solutions have no impact on the attractiveness of public transport. Nor do conveniences such as bus lanes, giving priority to public transport vehicles at intersections, and adjusting traffic light regulation to traffic volume, have a positive impact on perceptions of public transport as a reliable means of getting around the city. The results may be of particular importance for the city’s authorities and other stakeholders engaged in strategic activities and the building of a city of the future.

Suggested Citation

  • Edyta Bielińska-Dusza & Monika Hamerska & Agnieszka Żak, 2021. "Sustainable Mobility and the Smart City: A Vision of the City of the Future: The Case Study of Cracow (Poland)," Energies, MDPI, vol. 14(23), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7936-:d:688598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Armenia ANDRONICEANU, 2016. "The Quality Of The Urban Transport In Bucharest And How To Improve It In Accordance With The Expectations Of The Citizens," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 11(1), pages 5-18, February.
    2. Robert G. Hollands, 2008. "Will the real smart city please stand up?," City, Taylor & Francis Journals, vol. 12(3), pages 303-320, December.
    3. Remigiusz Jasiński & Marta Galant-Gołębiewska & Mateusz Nowak & Monika Ginter & Paula Kurzawska & Karolina Kurtyka & Marta Maciejewska, 2021. "Case Study of Pollution with Particulate Matter in Selected Locations of Polish Cities," Energies, MDPI, vol. 14(9), pages 1-12, April.
    4. Siyi Liu & Daoguang Yang & Nian Liu & Xin Liu, 2019. "The Effects of Air Pollution on Firms’ Internal Control Quality: Evidence from China," Sustainability, MDPI, vol. 11(18), pages 1-28, September.
    5. Simon Joss & Frans Sengers & Daan Schraven & Federico Caprotti & Youri Dayot, 2019. "The Smart City as Global Discourse: Storylines and Critical Junctures across 27 Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 26(1), pages 3-34, January.
    6. Luca Mora & Roberto Bolici & Mark Deakin, 2017. "The First Two Decades of Smart-City Research: A Bibliometric Analysis," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(1), pages 3-27, January.
    7. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    8. Zihan Zhao & Yuhan Zhang, 2020. "Impact of Smart City Planning and Construction on Economic and Social Benefits Based on Big Data Analysis," Complexity, Hindawi, vol. 2020, pages 1-11, November.
    9. Kukulska-Kozieł, Anita & Szylar, Marta & Cegielska, Katarzyna & Noszczyk, Tomasz & Hernik, Józef & Gawroński, Krzysztof & Dixon-Gough, Robert & Jombach, Sándor & Valánszki, István & Filepné Kovács, Kr, 2019. "Towards three decades of spatial development transformation in two contrasting post-Soviet cities—Kraków and Budapest," Land Use Policy, Elsevier, vol. 85(C), pages 328-339.
    10. Lazaroiu, George Cristian & Roscia, Mariacristina, 2012. "Definition methodology for the smart cities model," Energy, Elsevier, vol. 47(1), pages 326-332.
    11. Xie, Rui & Wei, Dihan & Han, Feng & Lu, Yue & Fang, Jiayu & Liu, Yu & Wang, Junfeng, 2019. "The effect of traffic density on smog pollution: Evidence from Chinese cities," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 421-427.
    12. Dastan Bamwesigye & Petra Hlavackova, 2019. "Analysis of Sustainable Transport for Smart Cities," Sustainability, MDPI, vol. 11(7), pages 1-20, April.
    13. Evandro Gonzalez Lima & Christine Kowal Chinelli & Andre Luis Azevedo Guedes & Elaine Garrido Vazquez & Ahmed W. A. Hammad & Assed Naked Haddad & Carlos Alberto Pereira Soares, 2020. "Smart and Sustainable Cities: The Main Guidelines of City Statute for Increasing the Intelligence of Brazilian Cities," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    14. Leonidas G. Anthopoulos, 2015. "Understanding the Smart City Domain: A Literature Review," Public Administration and Information Technology, in: Manuel Pedro Rodríguez-Bolívar (ed.), Transforming City Governments for Successful Smart Cities, edition 127, pages 9-21, Springer.
    15. Banister, David, 2008. "The sustainable mobility paradigm," Transport Policy, Elsevier, vol. 15(2), pages 73-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beata Sadowska & Magdalena Wójcik-Jurkiewicz & Grzegorz Zimon & Adam Lulek & Nina Stępnicka & Robert Walasek, 2023. "The Business Model in Energy Sector Reporting—A Case Study from Poland: A Pilot Study," Energies, MDPI, vol. 16(4), pages 1-18, February.
    2. Songling Chang & Melanie Kay Smith, 2023. "Residents’ Quality of Life in Smart Cities: A Systematic Literature Review," Land, MDPI, vol. 12(4), pages 1-17, April.
    3. Aldona Podgórniak-Krzykacz & Justyna Przywojska, 2022. "Public Policy and Citizens’ Attitudes towards Intelligent and Sustainable Transportation Solutions in the City—The Example of Lodz, Poland," Energies, MDPI, vol. 16(1), pages 1-21, December.
    4. Preeti Devi & Bartłomiej Kizielewicz & Abhishek Guleria & Andrii Shekhovtsov & Jarosław Wątróbski & Tomasz Królikowski & Jakub Więckowski & Wojciech Sałabun, 2022. "Decision Support in Selecting a Reliable Strategy for Sustainable Urban Transport Based on Laplacian Energy of T -Spherical Fuzzy Graphs," Energies, MDPI, vol. 15(14), pages 1-20, July.
    5. Blanka Tundys & Tomasz Wiśniewski, 2023. "Smart Mobility for Smart Cities—Electromobility Solution Analysis and Development Directions," Energies, MDPI, vol. 16(4), pages 1-20, February.
    6. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    7. Monika Wawer & Kalina Grzesiuk & Dorota Jegorow, 2022. "Smart Mobility in a Smart City in the Context of Generation Z Sustainability, Use of ICT, and Participation," Energies, MDPI, vol. 15(13), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    2. Ayyoob Sharifi & Zaheer Allam & Bakhtiar Feizizadeh & Hessam Ghamari, 2021. "Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    3. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    4. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.
    5. Guido Perboli & Mariangela Rosano, 2020. "A Taxonomic Analysis of Smart City Projects in North America and Europe," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    6. Koutra, Sesil & Becue, Vincent & Ioakimidis, Christos S., 2019. "Searching for the ‘smart’ definition through its spatial approach," Energy, Elsevier, vol. 169(C), pages 924-936.
    7. Parul Gupta & Sumedha Chauhan & M. P. Jaiswal, 2019. "Classification of Smart City Research - a Descriptive Literature Review and Future Research Agenda," Information Systems Frontiers, Springer, vol. 21(3), pages 661-685, June.
    8. Secinaro, Silvana & Brescia, Valerio & Lanzalonga, Federico & Santoro, Gabriele, 2022. "Smart city reporting: A bibliometric and structured literature review analysis to identify technological opportunities and challenges for sustainable development," Journal of Business Research, Elsevier, vol. 149(C), pages 296-313.
    9. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 56-69.
    10. Karimikia, Hadi & Bradshaw, Robert & Singh, Harminder & Ojo, Adegboyega & Donnellan, Brian & Guerin, Michael, 2022. "An emergent taxonomy of boundary spanning in the smart city context – The case of smart Dublin," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    11. Desdemoustier, Jonathan & Crutzen, Nathalie & Giffinger, Rudolf, 2019. "Municipalities' understanding of the Smart City concept: An exploratory analysis in Belgium," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 129-141.
    12. Fangyao Liu & Nicole Damen & Zhengxin Chen & Yong Shi & Sihai Guan & Daji Ergu, 2023. "Identifying Smart City Leaders and Followers with Machine Learning," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    13. Lim, Chiehyeon & Cho, Gi-Hyoug & Kim, Jeongseob, 2021. "Understanding the linkages of smart-city technologies and applications: Key lessons from a text mining approach and a call for future research," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    14. Paola Panuccio, 2019. "Smart Planning: From City to Territorial System," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    15. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    16. Lill Sarv & Ralf-Martin Soe, 2021. "Transition towards Smart City: The Case of Tallinn," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    17. Zaheer Allam & Ayyoob Sharifi & Simon Elias Bibri & Didier Chabaud, 2022. "Emerging Trends and Knowledge Structures of Smart Urban Governance," Sustainability, MDPI, vol. 14(9), pages 1-29, April.
    18. Canitez, Fatih, 2019. "Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 319-329.
    19. Magdalena Grebosz-Krawczyk, 2021. "Place branding (r)evolution: the management of the smart city’s brand," Place Branding and Public Diplomacy, Palgrave Macmillan, vol. 17(1), pages 93-104, March.
    20. Nielsen, Brita Fladvad & Baer, Daniela & Lindkvist, Carmel, 2019. "Identifying and supporting exploratory and exploitative models of innovation in municipal urban planning; key challenges from seven Norwegian energy ambitious neighborhood pilots," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 142-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7936-:d:688598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.