IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9671-d1172769.html
   My bibliography  Save this article

Identifying Smart City Leaders and Followers with Machine Learning

Author

Listed:
  • Fangyao Liu

    (College of Electronic and Information, Southwest Minzu University, Chengdu 610093, China)

  • Nicole Damen

    (School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE 68182, USA)

  • Zhengxin Chen

    (College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE 68182, USA)

  • Yong Shi

    (College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE 68182, USA)

  • Sihai Guan

    (College of Electronic and Information, Southwest Minzu University, Chengdu 610093, China)

  • Daji Ergu

    (College of Electronic and Information, Southwest Minzu University, Chengdu 610093, China)

Abstract

Smart cities have been a popular topic for the city stakeholders. A smart city is the next urban lifestyle that citizens expect. Due to the hypercompetitive and globalized economy, many cities have already started or are about to start their smart city projects. There is no uniform benchmark to evaluate the smart cities’ performance. Several organizations use their own indicators to evaluate smart cities worldwide or nationwide. This research paper leverages fuzzy logic to label smart city leaders and followers based on various organization’s evaluation meta results and then uses machine learning techniques to identify the key characteristics of leaders and followers. Based on the training data performance, the Support Vector Machine (SVM) is used to predict who will be the next smart city leader or follower. According to the proposed prediction framework, we have successfully predicted 30 smart city leaders and 20 followers.

Suggested Citation

  • Fangyao Liu & Nicole Damen & Zhengxin Chen & Yong Shi & Sihai Guan & Daji Ergu, 2023. "Identifying Smart City Leaders and Followers with Machine Learning," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9671-:d:1172769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marsal-Llacuna, Maria-Lluïsa & Colomer-Llinàs, Joan & Meléndez-Frigola, Joaquim, 2015. "Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 611-622.
    2. Robert G. Hollands, 2008. "Will the real smart city please stand up?," City, Taylor & Francis Journals, vol. 12(3), pages 303-320, December.
    3. Luca Mora & Roberto Bolici & Mark Deakin, 2017. "The First Two Decades of Smart-City Research: A Bibliometric Analysis," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(1), pages 3-27, January.
    4. Lazaroiu, George Cristian & Roscia, Mariacristina, 2012. "Definition methodology for the smart cities model," Energy, Elsevier, vol. 47(1), pages 326-332.
    5. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim Mutambik & Abdullah Almuqrin, 2024. "Employee Acceptance of Digital Transformation: A Study in a Smart City Context," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    2. Ibrahim Mutambik & John Lee & Abdullah Almuqrin & Abdulrhman Alkhanifer & Mohammed Baihan, 2023. "Gulf Cooperation Council Countries and Urbanisation: Are Open Government Data Portals Helping?," Sustainability, MDPI, vol. 15(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    2. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    3. Guido Perboli & Mariangela Rosano, 2020. "A Taxonomic Analysis of Smart City Projects in North America and Europe," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    4. Parul Gupta & Sumedha Chauhan & M. P. Jaiswal, 2019. "Classification of Smart City Research - a Descriptive Literature Review and Future Research Agenda," Information Systems Frontiers, Springer, vol. 21(3), pages 661-685, June.
    5. Schiavone, Francesco & Paolone, Francesco & Mancini, Daniela, 2019. "Business model innovation for urban smartization," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 210-219.
    6. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 56-69.
    7. Karimikia, Hadi & Bradshaw, Robert & Singh, Harminder & Ojo, Adegboyega & Donnellan, Brian & Guerin, Michael, 2022. "An emergent taxonomy of boundary spanning in the smart city context – The case of smart Dublin," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    8. Desdemoustier, Jonathan & Crutzen, Nathalie & Giffinger, Rudolf, 2019. "Municipalities' understanding of the Smart City concept: An exploratory analysis in Belgium," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 129-141.
    9. Dubravka Jurlina Alibegovic & Zeljka Kordej-De Villa & Mislav Sagovac, 2018. "Smart City Indicators: Can They Improve Governance in Croatian Large Cities?," Working Papers 1805, The Institute of Economics, Zagreb.
    10. Wang, Mengmeng & Zhou, Tao & Wang, Di, 2020. "Tracking the evolution processes of smart cities in China by assessing performance and efficiency," Technology in Society, Elsevier, vol. 63(C).
    11. Maria Vincenza Ciasullo & Orlando Troisi & Mara Grimaldi & Daniele Leone, 2020. "Multi-level governance for sustainable innovation in smart communities: an ecosystems approach," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1167-1195, December.
    12. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    13. Lill Sarv & Ralf-Martin Soe, 2021. "Transition towards Smart City: The Case of Tallinn," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    14. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.
    15. Magdalena Grebosz-Krawczyk, 2021. "Place branding (r)evolution: the management of the smart city’s brand," Place Branding and Public Diplomacy, Palgrave Macmillan, vol. 17(1), pages 93-104, March.
    16. Margarida Rodrigues & Mário Franco, 2018. "Measuring the Performance in Creative Cities: Proposal of a Multidimensional Model," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    17. Marcos Nahuel Martínez Stanziani, 2020. "Índices de Ciudades Inteligentes: construcción y análisis de un indicador para la ciudad de Bahía Blanca," Asociación Argentina de Economía Política: Working Papers 4374, Asociación Argentina de Economía Política.
    18. Julsrud, Dr. Tom Erik & Krogstad, Dr. Julie Runde, 2020. "Is there enough trust for the smart city? exploring acceptance for use of mobile phone data in oslo and tallinn," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    19. van den Buuse, Daniel & Kolk, Ans, 2019. "An exploration of smart city approaches by international ICT firms," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 220-234.
    20. Justyna Żywiołek & Francesco Schiavone, 2021. "Perception of the Quality of Smart City Solutions as a Sense of Residents’ Safety," Energies, MDPI, vol. 14(17), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9671-:d:1172769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.