IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7418-d674259.html
   My bibliography  Save this article

Feasibility Conditions for Demonstrative Peer-to-Peer Energy Market

Author

Listed:
  • Reo Kontani

    (Department of Technology Management for Innovation, The University of Tokyo, Tokyo 113-8656, Japan)

  • Kenji Tanaka

    (Department of Technology Management for Innovation, The University of Tokyo, Tokyo 113-8656, Japan)

  • Yuji Yamada

    (Faculty of Business Sciences, University of Tsukuba, Tokyo 112-0012, Japan)

Abstract

Distributed energy resources (DERs) play an indispensable role in mitigating global warming. The DERs require flexibility owing to the uncertainty of their power output when connected to the power grid. Recently, blockchain technology has actualized peer-to-peer (P2P) energy markets, promoting efficient and resilient flexibility in the power grid. This study aimed to extract insights about the contribution of the P2P energy markets to ensuring flexibility through analyzing transaction data. The data source was a demonstration project regarding the P2P energy markets conducted from 2019 to 2020 in Urawa-Misono District, Japan. The participants in the project were photovoltaic generators (PVGs), convenience stores (CSs), and residences equipped with battery storage as the only flexibility in the market. We quantitatively analyzed the prices and volumes ordered or transacted by each participant. The execution prices purchased by the residences were lower than those purchased by CSs; the differences between execution prices and order prices of the residences were narrower than those of PVGs and CSs; the lower state-of-charge (SoC) in the storage battery induced the higher purchasing prices. Thus, P2P energy markets, where holding flexibility resulted in the advantageous position, can promote installing flexibility through market mechanisms.

Suggested Citation

  • Reo Kontani & Kenji Tanaka & Yuji Yamada, 2021. "Feasibility Conditions for Demonstrative Peer-to-Peer Energy Market," Energies, MDPI, vol. 14(21), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7418-:d:674259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    2. Triet Nguyen-Van & Rikiya Abe & Kenji Tanaka, 2018. "Digital Adaptive Hysteresis Current Control for Multi-Functional Inverters," Energies, MDPI, vol. 11(9), pages 1-13, September.
    3. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daishi Sagawa & Kenji Tanaka & Fumiaki Ishida & Hideya Saito & Naoya Takenaga & Kosuke Saegusa, 2023. "P2P Electricity Trading Considering User Preferences for Renewable Energy and Demand-Side Shifts," Energies, MDPI, vol. 16(8), pages 1-25, April.
    2. Shinji Kuno & Kenji Tanaka & Yuji Yamada, 2022. "Effectiveness and Feasibility of Market Makers for P2P Electricity Trading," Energies, MDPI, vol. 15(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    2. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    3. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    4. Gonocruz, Ruth Anne Tanlioco & Yoshida, Yoshikuni & Ozawa, Akito & Aguirre, Rodolfo A. & Maguindayao, Edward Joseph H., 2023. "Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines," Applied Energy, Elsevier, vol. 350(C).
    5. Thomas Puschmann & Christian Hugo Hoffmann & Valentyn Khmarskyi, 2020. "How Green FinTech Can Alleviate the Impact of Climate Change—The Case of Switzerland," Sustainability, MDPI, vol. 12(24), pages 1-30, December.
    6. Rachid Darbali-Zamora & Jay Johnson & Adam Summers & C. Birk Jones & Clifford Hansen & Chad Showalter, 2021. "State Estimation-Based Distributed Energy Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments Using a Real-Time Digital Twin," Energies, MDPI, vol. 14(3), pages 1-21, February.
    7. Sadawi, Alia Al & Madani, Batool & Saboor, Sara & Ndiaye, Malick & Abu-Lebdeh, Ghassan, 2021. "A comprehensive hierarchical blockchain system for carbon emission trading utilizing blockchain of things and smart contract," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    8. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    9. Kannan Govindan, 2022. "Tunneling the barriers of blockchain technology in remanufacturing for achieving sustainable development goals: A circular manufacturing perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3769-3785, December.
    10. Hussain, Syed Asad & Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2023. "The perspective of energy poverty and 1st energy crisis of green transition," Energy, Elsevier, vol. 275(C).
    11. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    12. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    13. Zhenya Ji & Zishan Guo & Hao Li & Qi Wang, 2021. "Automated Scheduling Approach under Smart Contract for Remote Wind Farms with Power-to-Gas Systems in Multiple Energy Markets," Energies, MDPI, vol. 14(20), pages 1-17, October.
    14. Maroufkhani, Parisa & Desouza, Kevin C. & Perrons, Robert K. & Iranmanesh, Mohammad, 2022. "Digital transformation in the resource and energy sectors: A systematic review," Resources Policy, Elsevier, vol. 76(C).
    15. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Ahl, Amanda & Goto, Mika & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2022. "Challenges and opportunities of blockchain energy applications: Interrelatedness among technological, economic, social, environmental, and institutional dimensions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Yekang Ko & Brendan F. D. Barrett & Andrea E. Copping & Ayyoob Sharifi & Masaru Yarime & Xin Wang, 2019. "Energy Transitions Towards Low Carbon Resilience: Evaluation of Disaster-Triggered Local and Regional Cases," Sustainability, MDPI, vol. 11(23), pages 1-23, November.
    18. Jose Miguel Espi & Jaime Castello, 2019. "A Novel Fast MPPT Strategy for High Efficiency PV Battery Chargers," Energies, MDPI, vol. 12(6), pages 1-16, March.
    19. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    20. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7418-:d:674259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.