IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6572-d654699.html
   My bibliography  Save this article

Experimental Energy and Exergy Analysis of an Automotive Turbocharger Using a Novel Power-Based Approach

Author

Listed:
  • Sina Kazemi Bakhshmand

    (Integrated Modeling of Energy-Efficient Vehicle Powertrains, Technical University Berlin, Secretary CAR-B1, Carnotstrasse 1a, 10587 Berlin, Germany)

  • Ly Tai Luu

    (Integrated Modeling of Energy-Efficient Vehicle Powertrains, Technical University Berlin, Secretary CAR-B1, Carnotstrasse 1a, 10587 Berlin, Germany)

  • Clemens Biet

    (Integrated Modeling of Energy-Efficient Vehicle Powertrains, Technical University Berlin, Secretary CAR-B1, Carnotstrasse 1a, 10587 Berlin, Germany)

Abstract

The performance of turbochargers is heavily influenced by heat transfer. Conventional investigations are commonly performed under adiabatic assumptions and are based on the first law of thermodynamics, which is insufficient for perceiving the aerothermodynamic performance of turbochargers. This study aims to experimentally investigate the non-adiabatic performance of an automotive turbocharger turbine through energy and exergy analysis, considering heat transfer impacts. It is achieved based on experimental measurements and by implementing a novel innovative power-based approach to extract the amount of heat transfer. The turbocharger is measured on a hot gas test bench in both diabatic and adiabatic conditions. Consequently, by carrying out energy and exergy balances, the amount of lost available work due to heat transfer and internal irreversibilities within the turbine is quantified. The study allows researchers to achieve a deep understanding of the impacts of heat transfer on the aerothermodynamic performance of turbochargers, considering both the first and second laws of thermodynamics.

Suggested Citation

  • Sina Kazemi Bakhshmand & Ly Tai Luu & Clemens Biet, 2021. "Experimental Energy and Exergy Analysis of an Automotive Turbocharger Using a Novel Power-Based Approach," Energies, MDPI, vol. 14(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6572-:d:654699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Payri, Francisco & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2014. "External heat losses in small turbochargers: Model and experiments," Energy, Elsevier, vol. 71(C), pages 534-546.
    2. Diango, A. & Perilhon, C. & Descombes, G. & Danho, E., 2011. "Application of exergy balances for the optimization of non-adiabatic small turbomachines operation," Energy, Elsevier, vol. 36(5), pages 2924-2936.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marelli, Silvia & Marmorato, Giulio & Capobianco, Massimo, 2016. "Evaluation of heat transfer effects in small turbochargers by theoretical model and its experimental validation," Energy, Elsevier, vol. 112(C), pages 264-272.
    2. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    3. Serrano, José Ramón & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2015. "Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes," Energy, Elsevier, vol. 86(C), pages 204-218.
    4. Romagnoli, A. & Manivannan, A. & Rajoo, S. & Chiong, M.S. & Feneley, A. & Pesiridis, A. & Martinez-Botas, R.F., 2017. "A review of heat transfer in turbochargers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1442-1460.
    5. Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel, 2021. "Analytical prediction of Reynolds-number effects on miniaturized centrifugal compressors under off-design conditions," Energy, Elsevier, vol. 227(C).
    6. Tanda, Giovanni & Marelli, Silvia & Marmorato, Giulio & Capobianco, Massimo, 2017. "An experimental investigation of internal heat transfer in an automotive turbocharger compressor," Applied Energy, Elsevier, vol. 193(C), pages 531-539.
    7. Aydın, Hakan & Turan, Önder & Karakoç, T. Hikmet & Midilli, Adnan, 2013. "Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight," Energy, Elsevier, vol. 58(C), pages 550-560.
    8. Atılgan, Ramazan & Turan, Önder & Altuntaş, Önder & Aydın, Hakan & Synylo, Kateryna, 2013. "Environmental impact assessment of a turboprop engine with the aid of exergy," Energy, Elsevier, vol. 58(C), pages 664-671.
    9. Hamed Basir & Shahab Alaviyoun & Marc A. Rosen, 2022. "Thermal Investigation of a Turbocharger Using IR Thermography," Clean Technol., MDPI, vol. 4(2), pages 1-16, April.
    10. Tang, Yuanyuan & Zhang, Jundong & Gan, Huibing & Jia, Baozhu & Xia, Yu, 2017. "Development of a real-time two-stroke marine diesel engine model with in-cylinder pressure prediction capability," Applied Energy, Elsevier, vol. 194(C), pages 55-70.
    11. Turan, Onder, 2015. "An exergy way to quantify sustainability metrics for a high bypass turbofan engine," Energy, Elsevier, vol. 86(C), pages 722-736.
    12. Deligant, M. & Podevin, P. & Descombes, G., 2012. "Experimental identification of turbocharger mechanical friction losses," Energy, Elsevier, vol. 39(1), pages 388-394.
    13. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    14. Turan, Onder, 2012. "Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications," Energy, Elsevier, vol. 46(1), pages 51-61.
    15. Serrano, José Ramón & Tiseira, Andrés & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin & Tartoussi, Hadi, 2017. "Radial turbine performance measurement under extreme off-design conditions," Energy, Elsevier, vol. 125(C), pages 72-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6572-:d:654699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.