IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6180-d644923.html
   My bibliography  Save this article

Analysis of the Influence of the Type of Belt on the Energy Consumption of Transport Processes in a Belt Conveyor

Author

Listed:
  • Mirosław Bajda

    (Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15 St., 50-421 Wrocław, Poland)

  • Monika Hardygóra

    (Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15 St., 50-421 Wrocław, Poland)

Abstract

Results of tests into the energy-efficiency of belt conveyor transportation systems indicate that the energy consumption of their drive mechanisms can be limited by lowering the main resistances in the conveyor. The main component of these resistances is represented by belt indentation rolling resistance. Limiting its value will allow a reduction in the amount of energy consumed by the drive mechanisms. This article presents a test rig which enables uncomplicated evaluations of such rolling resistances. It also presents the results of comparative tests performed for five steel-cord conveyor belts. The tests involved a standard belt, a refurbished belt and three energy-saving belts. As temperature significantly influences the values of belt indentation rolling resistance, the tests were performed in both positive and negative temperatures. The results indicate that when compared with the standard belt, the refurbished and the energy-efficient belts generate higher and lower indentation rolling resistances, respectively. In order to demonstrate practical advantages resulting from the use of energy-saving belts, this article also includes calculations of the power demand of a conveyor drive mechanism during one calendar year, as measured on a belt conveyor operated in a mine. The replacement of a standard belt with a refurbished belt generates a power demand higher by 4.8%, and with an energy-efficient belt—lower by 15.3%.

Suggested Citation

  • Mirosław Bajda & Monika Hardygóra, 2021. "Analysis of the Influence of the Type of Belt on the Energy Consumption of Transport Processes in a Belt Conveyor," Energies, MDPI, vol. 14(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6180-:d:644923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Kulinowski & Piotr Kasza & Jacek Zarzycki, 2021. "Influence of Design Parameters of Idler Bearing Units on the Energy Consumption of a Belt Conveyor," Sustainability, MDPI, vol. 13(1), pages 1-13, January.
    2. Witold Kawalec & Natalia Suchorab & Martyna Konieczna-Fuławka & Robert Król, 2020. "Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine," Energies, MDPI, vol. 13(19), pages 1-10, October.
    3. Mu, Yunfei & Yao, Taiang & Jia, Hongjie & Yu, Xiaodan & Zhao, Bo & Zhang, Xuesong & Ni, Chouwei & Du, Lijia, 2020. "Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage," Applied Energy, Elsevier, vol. 275(C).
    4. Tebello Mathaba & Xiaohua Xia, 2015. "A Parametric Energy Model for Energy Management of Long Belt Conveyors," Energies, MDPI, vol. 8(12), pages 1-19, December.
    5. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    6. Witold Kawalec & Robert Król, 2021. "Generating of Electric Energy by a Declined Overburden Conveyor in a Continuous Surface Mine," Energies, MDPI, vol. 14(13), pages 1-11, July.
    7. He, Daijie & Pang, Yusong & Lodewijks, Gabriel, 2017. "Green operations of belt conveyors by means of speed control," Applied Energy, Elsevier, vol. 188(C), pages 330-341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leopold Hrabovský & Jiří Fries, 2021. "Transport Performance of a Steeply Situated Belt Conveyor," Energies, MDPI, vol. 14(23), pages 1-15, November.
    2. Mirosław Bajda & Monika Hardygóra & Daniela Marasová, 2022. "Energy Efficiency of Conveyor Belts in Raw Materials Industry," Energies, MDPI, vol. 15(9), pages 1-6, April.
    3. Piotr Bortnowski & Horst Gondek & Robert Król & Daniela Marasova & Maksymilian Ozdoba, 2023. "Detection of Blockages of the Belt Conveyor Transfer Point Using an RGB Camera and CNN Autoencoder," Energies, MDPI, vol. 16(4), pages 1-18, February.
    4. Piotr Krawiec & Łukasz Warguła & Konrad Jan Waluś & Elżbieta Gawrońska & Zuzana Ságová & Jonas Matijošius, 2022. "Efficiency and Slippage in Draw Gears with Flat Belts," Energies, MDPI, vol. 15(23), pages 1-11, December.
    5. Paweł Bogacz & Łukasz Cieślik & Dawid Osowski & Paweł Kochaj, 2022. "Analysis of the Scope for Reducing the Level of Energy Consumption of Crew Transport in an Underground Mining Plant Using a Conveyor Belt System Mining Plant," Energies, MDPI, vol. 15(20), pages 1-16, October.
    6. Piotr Bortnowski & Robert Król & Anna Nowak-Szpak & Maksymilian Ozdoba, 2022. "A Preliminary Studies of the Impact of a Conveyor Belt on the Noise Emission," Sustainability, MDPI, vol. 14(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Kulinowski & Piotr Kasza & Jacek Zarzycki, 2022. "Methods of Testing of Roller Rotational Resistance in Aspect of Energy Consumption of a Belt Conveyor," Energies, MDPI, vol. 16(1), pages 1-12, December.
    2. Witold Kawalec & Robert Król & Natalia Suchorab, 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    3. Mirosław Bajda & Monika Hardygóra, 2021. "Analysis of Reasons for Reduced Strength of Multiply Conveyor Belt Splices," Energies, MDPI, vol. 14(5), pages 1-21, March.
    4. Paweł Bogacz & Łukasz Cieślik & Dawid Osowski & Paweł Kochaj, 2022. "Analysis of the Scope for Reducing the Level of Energy Consumption of Crew Transport in an Underground Mining Plant Using a Conveyor Belt System Mining Plant," Energies, MDPI, vol. 15(20), pages 1-16, October.
    5. Jianhua Ji & Changyun Miao & Xianguo Li & Yi Liu, 2021. "Speed regulation strategy and algorithm for the variable-belt-speed energy-saving control of a belt conveyor based on the material flow rate," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-15, February.
    6. Sergey Zhironkin & Michal Cehlár, 2021. "Coal Mining Sustainable Development: Economics and Technological Outlook," Energies, MDPI, vol. 14(16), pages 1-8, August.
    7. Pihnastyi, Oleh & Kozhevnikov, Georgii, 2020. "Control of a Conveyor Based on a Neural Network," MPRA Paper 111950, University Library of Munich, Germany, revised 09 Oct 2021.
    8. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Sergey Zhironkin, 2022. "Development of a Hydraulic System for the Automatic Expansion of Powered Roof Support," Energies, MDPI, vol. 15(3), pages 1-15, January.
    9. Andrzej Ziółkowski & Paweł Fuć & Piotr Lijewski & Aleks Jagielski & Maciej Bednarek & Władysław Kusiak, 2022. "Analysis of Exhaust Emissions from Heavy-Duty Vehicles on Different Applications," Energies, MDPI, vol. 15(21), pages 1-21, October.
    10. Pihnastyi, Oleh & Khodusov, Valery, 2020. "Neural model of conveyor type transport system," MPRA Paper 101527, University Library of Munich, Germany, revised 01 May 2020.
    11. Hamid Shiri & Jacek Wodecki & Bartłomiej Ziętek & Radosław Zimroz, 2021. "Inspection Robotic UGV Platform and the Procedure for an Acoustic Signal-Based Fault Detection in Belt Conveyor Idler," Energies, MDPI, vol. 14(22), pages 1-17, November.
    12. Norbert Zsiga & Johannes Ritzmann & Patrik Soltic, 2021. "Practical Aspects of Cylinder Deactivation and Reactivation," Energies, MDPI, vol. 14(9), pages 1-20, April.
    13. Qixun Zhou & Hao Gong & Guanghui Du & Yingxing Zhang & Hucheng He, 2022. "Distributed Permanent Magnet Direct-Drive Belt Conveyor System and Its Control Strategy," Energies, MDPI, vol. 15(22), pages 1-18, November.
    14. Warguła, Łukasz & Kukla, Mateusz & Wieczorek, Bartosz & Krawiec, Piotr, 2022. "Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms," Renewable Energy, Elsevier, vol. 181(C), pages 630-639.
    15. Mu, Yunfei & Yao, Taiang & Jia, Hongjie & Yu, Xiaodan & Zhao, Bo & Zhang, Xuesong & Ni, Chouwei & Du, Lijia, 2020. "Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage," Applied Energy, Elsevier, vol. 275(C).
    16. Zhang, Lijun & Chennells, Michael & Xia, Xiaohua, 2018. "A power dispatch model for a ferrochrome plant heat recovery cogeneration system," Applied Energy, Elsevier, vol. 227(C), pages 180-189.
    17. Zhang, Shirong & Mao, Wei, 2017. "Optimal operation of coal conveying systems assembled with crushers using model predictive control methodology," Applied Energy, Elsevier, vol. 198(C), pages 65-76.
    18. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    19. Pihnastyi, Oleh & Khodusov, Valery & Kotova, Anna, 2022. "The problem of combined optimal load flow control of main conveyor line," MPRA Paper 113787, University Library of Munich, Germany, revised 05 Jun 2022.
    20. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6180-:d:644923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.