IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7691-d946054.html
   My bibliography  Save this article

Analysis of the Scope for Reducing the Level of Energy Consumption of Crew Transport in an Underground Mining Plant Using a Conveyor Belt System Mining Plant

Author

Listed:
  • Paweł Bogacz

    (Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology in Krakow, 30-059 Krakow, Poland)

  • Łukasz Cieślik

    (Lubelski Węgiel Bogdanka S.A., 21-013 Bogdanka, Poland)

  • Dawid Osowski

    (Lubelski Węgiel Bogdanka S.A., 21-013 Bogdanka, Poland)

  • Paweł Kochaj

    (Lubelski Węgiel Bogdanka S.A., 21-013 Bogdanka, Poland)

Abstract

One of the main elements that shape the production process in an underground mining plant is, in the broadest sense of the word, transport. Currently, a large amount of rolling stock from cable cars or suspended railways is maintained in mining plants, along with extensive infrastructure used for transporting crew and materials. The development of conveyor belt transport systems, as well as system process management, is increasing efficiency levels. Mining transport is a complex process, requiring large amounts of energy, which incurs significant production costs. We conduct a comparative analysis of the human transport system using a suspended railway with belt transport at Lubelski Węgiel “Bogdanka” Spółka Akcyjna (the largest hard coal mine in Poland), in terms of energy efficiency levels. We found that the process of transporting the crew in an underground mining plant to the production site using a conveyor belt system was less energy-intensive, and therefore created less emissions than the currently used model based on suspended queues. The analyses for the above project were conducted according to a model that was based on the study and analysis phase of the project through to its implementation and transfer to operational activities. The analysis was carried out based on the created simulation model, taking into account all elements of the crew transport process to and from the mining area. The implementation of the technical solution allowed for nearly a threefold reduction in the level of energy consumption and emissivity. In the analyzed model, the energy consumption in the first phase of production was 3.04 kWh per employee using the diesel rails system and 1.13 per employee using the belt conveyor system.

Suggested Citation

  • Paweł Bogacz & Łukasz Cieślik & Dawid Osowski & Paweł Kochaj, 2022. "Analysis of the Scope for Reducing the Level of Energy Consumption of Crew Transport in an Underground Mining Plant Using a Conveyor Belt System Mining Plant," Energies, MDPI, vol. 15(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7691-:d:946054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Witold Kawalec & Natalia Suchorab & Martyna Konieczna-Fuławka & Robert Król, 2020. "Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine," Energies, MDPI, vol. 13(19), pages 1-10, October.
    2. Mirosław Bajda & Monika Hardygóra, 2021. "Analysis of Reasons for Reduced Strength of Multiply Conveyor Belt Splices," Energies, MDPI, vol. 14(5), pages 1-21, March.
    3. Dominika Olchówka & Aleksandra Rzeszowska & Leszek Jurdziak & Ryszard Błażej, 2021. "Statistical Analysis and Neural Network in Detecting Steel Cord Failures in Conveyor Belts," Energies, MDPI, vol. 14(11), pages 1-11, May.
    4. Mirosław Bajda & Monika Hardygóra, 2021. "Analysis of the Influence of the Type of Belt on the Energy Consumption of Transport Processes in a Belt Conveyor," Energies, MDPI, vol. 14(19), pages 1-17, September.
    5. Tebello Mathaba & Xiaohua Xia, 2015. "A Parametric Energy Model for Energy Management of Long Belt Conveyors," Energies, MDPI, vol. 8(12), pages 1-19, December.
    6. Jarosław Szrek & Janusz Jakubiak & Radoslaw Zimroz, 2022. "A Mobile Robot-Based System for Automatic Inspection of Belt Conveyors in Mining Industry," Energies, MDPI, vol. 15(1), pages 1-16, January.
    7. Chunyu Yang & Jinhao Liu & Heng Li & Linna Zhou, 2018. "Energy Modeling and Parameter Identification of Dual-Motor-Driven Belt Conveyors without Speed Sensors," Energies, MDPI, vol. 11(12), pages 1-17, November.
    8. Hamid Shiri & Jacek Wodecki & Bartłomiej Ziętek & Radosław Zimroz, 2021. "Inspection Robotic UGV Platform and the Procedure for an Acoustic Signal-Based Fault Detection in Belt Conveyor Idler," Energies, MDPI, vol. 14(22), pages 1-17, November.
    9. Kamil Szewerda & Jarosław Tokarczyk & Andrzej Wieczorek, 2021. "Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail," Energies, MDPI, vol. 14(6), pages 1-15, March.
    10. Przemyslaw Dabek & Jaroslaw Szrek & Radoslaw Zimroz & Jacek Wodecki, 2022. "An Automatic Procedure for Overheated Idler Detection in Belt Conveyors Using Fusion of Infrared and RGB Images Acquired during UGV Robot Inspection," Energies, MDPI, vol. 15(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirosław Bajda & Monika Hardygóra & Daniela Marasová, 2022. "Energy Efficiency of Conveyor Belts in Raw Materials Industry," Energies, MDPI, vol. 15(9), pages 1-6, April.
    2. Dawid Szurgacz & Sergey Zhironkin & Jiří Pokorný & A. J. S. (Sam) Spearing & Stefan Vöth & Michal Cehlár & Izabela Kowalewska, 2021. "Development of an Active Training Method for Belt Conveyor," IJERPH, MDPI, vol. 19(1), pages 1-12, December.
    3. Karol Semrád & Katarína Draganová, 2022. "Non-Destructive Testing of Pipe Conveyor Belts Using Glass-Coated Magnetic Microwires," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    4. Mirosław Bajda & Monika Hardygóra, 2021. "Analysis of the Influence of the Type of Belt on the Energy Consumption of Transport Processes in a Belt Conveyor," Energies, MDPI, vol. 14(19), pages 1-17, September.
    5. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Sergey Zhironkin, 2022. "Development of a Hydraulic System for the Automatic Expansion of Powered Roof Support," Energies, MDPI, vol. 15(3), pages 1-15, January.
    6. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    7. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    8. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.
    9. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    10. Piotr Kulinowski & Piotr Kasza & Jacek Zarzycki, 2022. "Methods of Testing of Roller Rotational Resistance in Aspect of Energy Consumption of a Belt Conveyor," Energies, MDPI, vol. 16(1), pages 1-12, December.
    11. Piotr Bortnowski & Horst Gondek & Robert Król & Daniela Marasova & Maksymilian Ozdoba, 2023. "Detection of Blockages of the Belt Conveyor Transfer Point Using an RGB Camera and CNN Autoencoder," Energies, MDPI, vol. 16(4), pages 1-18, February.
    12. Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.
    13. Piotr Krawiec & Łukasz Warguła & Konrad Jan Waluś & Elżbieta Gawrońska & Zuzana Ságová & Jonas Matijošius, 2022. "Efficiency and Slippage in Draw Gears with Flat Belts," Energies, MDPI, vol. 15(23), pages 1-11, December.
    14. Sergey Zhironkin & Michal Cehlár, 2021. "Coal Mining Sustainable Development: Economics and Technological Outlook," Energies, MDPI, vol. 14(16), pages 1-8, August.
    15. Pihnastyi, Oleh & Kozhevnikov, Georgii, 2020. "Control of a Conveyor Based on a Neural Network," MPRA Paper 111950, University Library of Munich, Germany, revised 09 Oct 2021.
    16. Pihnastyi, Oleh & Khodusov, Valery, 2020. "Neural model of conveyor type transport system," MPRA Paper 101527, University Library of Munich, Germany, revised 01 May 2020.
    17. Witold Kawalec & Robert Król & Natalia Suchorab, 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    18. Qixun Zhou & Hao Gong & Guanghui Du & Yingxing Zhang & Hucheng He, 2022. "Distributed Permanent Magnet Direct-Drive Belt Conveyor System and Its Control Strategy," Energies, MDPI, vol. 15(22), pages 1-18, November.
    19. Zhang, Lijun & Chennells, Michael & Xia, Xiaohua, 2018. "A power dispatch model for a ferrochrome plant heat recovery cogeneration system," Applied Energy, Elsevier, vol. 227(C), pages 180-189.
    20. Ryszard Błażej & Leszek Jurdziak & Agata Kirjanów-Błażej & Mirosław Bajda & Dominika Olchówka & Aleksandra Rzeszowska, 2022. "Profitability of Conveyor Belt Refurbishment and Diagnostics in the Light of the Circular Economy and the Full and Effective Use of Resources," Energies, MDPI, vol. 15(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7691-:d:946054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.