IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5711-d632964.html
   My bibliography  Save this article

Compressor Degradation Management Strategies for Gas Turbine Aero-Engine Controller Design

Author

Listed:
  • Xiaohuan Sun

    (Centre for Propulsion Engineering, School of Aerospace Transport and Manufacturing (SATM), Cranfield University, Bedford MK43 0AL, UK)

  • Soheil Jafari

    (Centre for Propulsion Engineering, School of Aerospace Transport and Manufacturing (SATM), Cranfield University, Bedford MK43 0AL, UK)

  • Seyed Alireza Miran Fashandi

    (Department of Mechanical Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran)

  • Theoklis Nikolaidis

    (Centre for Propulsion Engineering, School of Aerospace Transport and Manufacturing (SATM), Cranfield University, Bedford MK43 0AL, UK)

Abstract

The Advisory Council for Aeronautics Research in Europe (ACARE) Flight Path 2050 focuses on ambitious and severe targets for the next generation of air travel systems (e.g., 75% reduction in CO 2 emissions per passenger kilometre, a 90% reduction in NOx emissions, and a 65% reduction in the noise emissions of flying aircraft relative to the capabilities of typical new aircraft in 2000). Degradation is an inevitable phenomenon as aero-engines age with significant impacts on the engine performance, emissions level, and fuel consumption. The engine control system is a key element capable of coping with degradation consequences subject to the implementation of an advanced management strategy. This paper demonstrates a methodological approach for aero-engine controller adjustment to deal with degradation implications, such as emission levels and increased fuel consumption. For this purpose, a component level model for an aero-engine was first built and transformed to a block-structured Wiener model using a system identification approach. An industrial Min-Max control strategy was then developed to satisfy the steady state and transient limit protection requirements simultaneously while satisfying the physical limitation control modes, such as over-speed, surge, and over-temperature. Next, the effects of degradation on the engine performance and associated changes to the controller were analysed thoroughly to propose practical degradation management strategies based on a comprehensive scientometric analysis of the topic. The simulation results show that the proposed strategy was effective in restoring the degraded engine performance to the level of the clean engine while protecting the engine from physical limitations. The proposed adjustments in the control strategy reduced the fuel consumption and, as a result, the emission level and carbon footprint of the engine.

Suggested Citation

  • Xiaohuan Sun & Soheil Jafari & Seyed Alireza Miran Fashandi & Theoklis Nikolaidis, 2021. "Compressor Degradation Management Strategies for Gas Turbine Aero-Engine Controller Design," Energies, MDPI, vol. 14(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5711-:d:632964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naeem, M. & Singh, R. & Probert, D., 2001. "Consequences of aero-engine deteriorations for military aircraft," Applied Energy, Elsevier, vol. 70(2), pages 103-133, October.
    2. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Menga & Akhila Mothakani & Maria Grazia De Giorgi & Radoslaw Przysowa & Antonio Ficarella, 2022. "Extreme Learning Machine-Based Diagnostics for Component Degradation in a Microturbine," Energies, MDPI, vol. 15(19), pages 1-22, October.
    2. Teresa Castiglione & Diego Perrone & Luciano Strafella & Antonio Ficarella & Sergio Bova, 2023. "Linear Model of a Turboshaft Aero-Engine Including Components Degradation for Control-Oriented Applications," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    2. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    3. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    4. J. Gómez-Verjan & I. Gonzalez-Sanchez & E. Estrella-Parra & R. Reyes-Chilpa, 2015. "Trends in the chemical and pharmacological research on the tropical trees Calophyllum brasiliense and Calophyllum inophyllum, a global context," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1019-1030, November.
    5. Luis Araya-Castillo & Felipe Hernández-Perlines & Hugo Moraga & Antonio Ariza-Montes, 2021. "Scientometric Analysis of Research on Socioemotional Wealth," Sustainability, MDPI, vol. 13(7), pages 1-26, March.
    6. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    7. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    8. Tuba Bircan & Almila Alkim Akdag Salah, 2022. "A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    9. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    11. Muthukumar Perumal & Selvam Sekar & Paula C. S. Carvalho, 2024. "Global Investigations of Seawater Intrusion (SWI) in Coastal Groundwaters in the Last Two Decades (2000–2020): A Bibliometric Analysis," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    12. Massimiliano M. Pellegrini & Riccardo Rialti & Giacomo Marzi & Andrea Caputo, 2020. "Sport entrepreneurship: A synthesis of existing literature and future perspectives," International Entrepreneurship and Management Journal, Springer, vol. 16(3), pages 795-826, September.
    13. David Vérez & Luisa F. Cabeza, 2021. "Which Building Services Are Considered to Have Impact on Climate Change?," Energies, MDPI, vol. 14(13), pages 1-16, June.
    14. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales, 2020. "Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1479-1510, August.
    15. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    16. Giovanni Matteo & Pierfrancesco Nardi & Stefano Grego & Caterina Guidi, 2018. "Bibliometric analysis of Climate Change Vulnerability Assessment research," Environment Systems and Decisions, Springer, vol. 38(4), pages 508-516, December.
    17. Diogo Ferraz & Fernanda P. S. Falguera & Enzo B. Mariano & Dominik Hartmann, 2021. "Linking Economic Complexity, Diversification, and Industrial Policy with Sustainable Development: A Structured Literature Review," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    18. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    19. Gallego-Losada, María-Jesús & Montero-Navarro, Antonio & García-Abajo, Elisa & Gallego-Losada, Rocío, 2023. "Digital financial inclusion. Visualizing the academic literature," Research in International Business and Finance, Elsevier, vol. 64(C).
    20. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5711-:d:632964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.