IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5242-d620921.html
   My bibliography  Save this article

Optimized Planning of Distribution Grids Considering Grid Expansion, Battery Systems and Dynamic Curtailment

Author

Listed:
  • Ouafa Laribi

    (Institute of Power Transmission and High Voltage Technology, University of Stuttgart, 70174 Stuttgart, Germany)

  • Krzysztof Rudion

    (Institute of Power Transmission and High Voltage Technology, University of Stuttgart, 70174 Stuttgart, Germany)

Abstract

The increasing integration of renewable energies into the grid is calling for the expansion of the power transport capacities in the distribution system. Yet, the expansion of the grid could require long authorization procedures and cannot be always asserted. Therefore, a higher utilization of the existing grid is becoming increasingly necessary today. This paper proposes a new time series-based planning method for distribution systems using classical grid expansion instruments as well as innovative planning instruments such as battery storage systems (BSS) and dynamic power curtailment (DPC). These planning instruments could be applied individually or combined. The aim of the BSS and DPC application is to enable a higher utilization of the grid at minimal costs. The proposed method, which has been implemented as an automated planning algorithm, determines the cost-optimal grid reinforcement measures that ensure the prevention of prognosticated congestions in the considered grid. Furthermore, the application of the proposed planning method on the considered power system has proven that a combination of BSS and grid expansion could be more economical than an individual application of BSS and grid expansion.

Suggested Citation

  • Ouafa Laribi & Krzysztof Rudion, 2021. "Optimized Planning of Distribution Grids Considering Grid Expansion, Battery Systems and Dynamic Curtailment," Energies, MDPI, vol. 14(17), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5242-:d:620921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.
    2. Resch, Matthias & Bühler, Jochen & Klausen, Mira & Sumper, Andreas, 2017. "Impact of operation strategies of large scale battery systems on distribution grid planning in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1042-1063.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elli Nikolaidou & Ian Walker & David Coley & Stephen Allen & Daniel Fosas & Matthew Roberts, 2022. "Towards Active Buildings: Stakeholder Perceptions of the Next Generation of Buildings," Energies, MDPI, vol. 15(15), pages 1-21, August.
    2. Aswad Adib & Joao Onofre Pereira Pinto & Madhu S. Chinthavali, 2023. "GA-Based Voltage Optimization of Distribution Feeder with High-Penetration of DERs Using Megawatt-Scale Units," Energies, MDPI, vol. 16(13), pages 1-10, June.
    3. Bernd Thormann & Thomas Kienberger, 2022. "Estimation of Grid Reinforcement Costs Triggered by Future Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale Simulation) and Coincidence Factors (Single vs. Multiple Appl," Energies, MDPI, vol. 15(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    2. Ayotunde A. Adeyemo & Elisabetta Tedeschi, 2023. "Technology Suitability Assessment of Battery Energy Storage System for High-Energy Applications on Offshore Oil and Gas Platforms," Energies, MDPI, vol. 16(18), pages 1-38, September.
    3. Francesc Girbau-Llistuella & Francisco Díaz-González & Andreas Sumper & Ramon Gallart-Fernández & Daniel Heredero-Peris, 2018. "Smart Grid Architecture for Rural Distribution Networks: Application to a Spanish Pilot Network," Energies, MDPI, vol. 11(4), pages 1-35, April.
    4. Camilo Andres Mora & Oscar Danilo Montoya & Edwin Rivas Trujillo, 2020. "Mixed-Integer Programming Model for Transmission Network Expansion Planning with Battery Energy Storage Systems (BESS)," Energies, MDPI, vol. 13(17), pages 1-22, August.
    5. Christian van Someren & Martien Visser & Han Slootweg, 2023. "Sizing Batteries for Power Flow Management in Distribution Grids: A Method to Compare Battery Capacities for Different Siting Configurations and Variable Power Flow Simultaneity," Energies, MDPI, vol. 16(22), pages 1-19, November.
    6. Alba Leduchowicz-Municio & Miguel Edgar Morales Udaeta & André Luiz Veiga Gimenes & Tuo Ji & Victor Baiochi Riboldi, 2022. "Socio-Environmental Evaluation of MV Commercial Time-Shift Application Based on Battery Energy Storage Systems," Energies, MDPI, vol. 15(14), pages 1-21, July.
    7. Edoardo De Din & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2020. "A Coordinated Voltage Control for Overvoltage Mitigation in LV Distribution Grids," Energies, MDPI, vol. 13(8), pages 1-20, April.
    8. Bernd Thormann & Thomas Kienberger, 2022. "Estimation of Grid Reinforcement Costs Triggered by Future Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale Simulation) and Coincidence Factors (Single vs. Multiple Appl," Energies, MDPI, vol. 15(4), pages 1-26, February.
    9. Iván Pazmiño & Sergio Martinez & Danny Ochoa, 2021. "Analysis of Control Strategies Based on Virtual Inertia for the Improvement of Frequency Stability in an Islanded Grid with Wind Generators and Battery Energy Storage Systems," Energies, MDPI, vol. 14(3), pages 1-18, January.
    10. Eugenio Borghini & Cinzia Giannetti & James Flynn & Grazia Todeschini, 2021. "Data-Driven Energy Storage Scheduling to Minimise Peak Demand on Distribution Systems with PV Generation," Energies, MDPI, vol. 14(12), pages 1-22, June.
    11. Guo, Rui & Meunier, Simon & Protopapadaki, Christina & Saelens, Dirk, 2023. "A review of European low-voltage distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    13. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2023. "Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO 2 Emissions," Mathematics, MDPI, vol. 11(7), pages 1-23, March.
    14. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
    15. Ulf Philipp Müller & Birgit Schachler & Malte Scharf & Wolf-Dieter Bunke & Stephan Günther & Julian Bartels & Guido Pleßmann, 2019. "Integrated Techno-Economic Power System Planning of Transmission and Distribution Grids," Energies, MDPI, vol. 12(11), pages 1-30, May.
    16. Bayer, Benjamin & Matschoss, Patrick & Thomas, Heiko & Marian, Adela, 2018. "The German experience with integrating photovoltaic systems into the low-voltage grids," Renewable Energy, Elsevier, vol. 119(C), pages 129-141.
    17. Neetzow, Paul & Mendelevitch, Roman & Siddiqui, Sauleh, 2019. "Modeling coordination between renewables and grid: Policies to mitigate distribution grid constraints using residential PV-battery systems," Energy Policy, Elsevier, vol. 132(C), pages 1017-1033.
    18. Tovar Rosas, Mario A. & Pérez, Miguel Robles & Martínez Pérez, E. Rafael, 2022. "Itineraries for charging and discharging a BESS using energy predictions based on a CNN-LSTM neural network model in BCS, Mexico," Renewable Energy, Elsevier, vol. 188(C), pages 1141-1165.
    19. Joaquín Luque & Benedikt Tepe & Diego Larios & Carlos León & Holger Hesse, 2023. "Machine Learning Estimation of Battery Efficiency and Related Key Performance Indicators in Smart Energy Systems," Energies, MDPI, vol. 16(14), pages 1-18, July.
    20. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5242-:d:620921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.