IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5195-d619587.html
   My bibliography  Save this article

Power Enhancement of a PV Module Using Different Types of Phase Change Materials

Author

Listed:
  • Ali Shaito

    (SDM Research Group, The International University of Beirut BIU, Beirut 146404, Lebanon
    Mechanical Department, Lebanese International University LIU, Bekaa 1803, Lebanon)

  • Mohammad Hammoud

    (SDM Research Group, The International University of Beirut BIU, Beirut 146404, Lebanon
    Mechanical Department, Lebanese International University LIU, Bekaa 1803, Lebanon)

  • Fadel Kawtharani

    (Mechanical Department, Lebanese International University LIU, Bekaa 1803, Lebanon)

  • Ali Kawtharani

    (SDM Research Group, The International University of Beirut BIU, Beirut 146404, Lebanon)

  • Hilal Reda

    (Faculty of Engineering, Section III, Lebanese University, Beirut 6573/14, Lebanon)

Abstract

Photovoltaic (PV) systems are well-known systems that convert solar energy into electrical energy. Increases in operating temperature induce a drop in conversion efficiency and, thus, in the output power produced by the panel. This paper investigates the effectiveness of using Phase Change Materials (PCMs) in cooling PV modules. Due to its high storage density with limited temperature fluctuations, the latent heat storage in a PCM is an important factor. This depends on the thermophysical properties of PCMs such as the melting point, specific heat capacity, latent heat, density, etc. This paper aims to make a comparison between four types of PCM with different melting points and physical properties. Indoor experimental studies were performed using five prototypes. A halogen lamp was used as a solar simulator to ensure that experiments were carried out under the same irradiance. The first prototype was the reference, which consisted of a PV panel, a stand, and an electric circuit without PCMs. Four other prototypes were investigated, consisting of a PV panel with a container added at the rear face, with each having different types of PCM: sodium sulfate decahydrate, sodium phosphate dibasic dodecahydrate, decanoic acid, and calcium chloride hexahydrate, respectively. The results clearly show the effect of PCMs’ properties on PV temperature profile and power generation.

Suggested Citation

  • Ali Shaito & Mohammad Hammoud & Fadel Kawtharani & Ali Kawtharani & Hilal Reda, 2021. "Power Enhancement of a PV Module Using Different Types of Phase Change Materials," Energies, MDPI, vol. 14(16), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5195-:d:619587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prieto, Cristina & Cabeza, Luisa F., 2019. "Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance," Applied Energy, Elsevier, vol. 254(C).
    2. Larissa Batrancea & Mircea Iosif Rus & Ema Speranta Masca & Ioan Dan Morar, 2021. "Fiscal Pressure as a Trigger of Financial Performance for the Energy Industry: An Empirical Investigation across a 16-Year Period," Energies, MDPI, vol. 14(13), pages 1-17, June.
    3. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    4. Dongyi Zhou & Jiawei Yuan & Yuhong Zhou & Yicai Liu, 2020. "Preparation and Properties of Capric–Myristic Acid/Expanded Graphite Composite Phase Change Materials for Latent Heat Thermal Energy Storage," Energies, MDPI, vol. 13(10), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Ostasz & Dominika Siwiec & Andrzej Pacana, 2022. "Universal Model to Predict Expected Direction of Products Quality Improvement," Energies, MDPI, vol. 15(5), pages 1-18, February.
    2. Dominika Siwiec & Andrzej Pacana, 2021. "Model of Choice Photovoltaic Panels Considering Customers’ Expectations," Energies, MDPI, vol. 14(18), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larissa M. Batrancea & Horia Tulai, 2022. "Thriving or Surviving in the Energy Industry: Lessons on Energy Production from the European Economies," Energies, MDPI, vol. 15(22), pages 1-16, November.
    2. Chwieduk, Bartosz & Chwieduk, Dorota, 2021. "Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions," Renewable Energy, Elsevier, vol. 165(P2), pages 117-126.
    3. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank," Applied Energy, Elsevier, vol. 278(C).
    4. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    5. Jingjing Liu & Jing Wang & Tianlin Zhai & Zehui Li, 2022. "The Response of Ecologically Functional Land to Changes in Urban Economic Growth and Transportation Construction in China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    6. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    7. Alicia Crespo & Gabriel Zsembinszki & David Vérez & Emiliano Borri & Cèsar Fernández & Luisa F. Cabeza & Alvaro de Gracia, 2021. "Optimization of Design Variables of a Phase Change Material Storage Tank and Comparison of a 2D Implicit vs. 2D Explicit Model," Energies, MDPI, vol. 14(9), pages 1-15, May.
    8. Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
    9. Luu, Minh Tri & Milani, Dia & Nomvar, Mobin & Abbas, Ali, 2020. "A design protocol for enhanced discharge exergy in phase change material heat battery," Applied Energy, Elsevier, vol. 265(C).
    10. Karthick, A. & Murugavel, K. Kalidasa & Ramanan, P., 2018. "Performance enhancement of a building-integrated photovoltaic module using phase change material," Energy, Elsevier, vol. 142(C), pages 803-812.
    11. Vasileios Kapsalis & Grigorios Kyriakopoulos & Miltiadis Zamparas & Athanasios Tolis, 2021. "Investigation of the Photon to Charge Conversion and Its Implication on Photovoltaic Cell Efficient Operation," Energies, MDPI, vol. 14(11), pages 1-16, May.
    12. David Borge-Diez & Enrique Rosales-Asensio & Ana I. Palmero-Marrero & Emin Acikkalp, 2022. "Optimization of CSP Plants with Thermal Energy Storage for Electricity Price Stability in Spot Markets," Energies, MDPI, vol. 15(5), pages 1-25, February.
    13. Andre Amaral & Taysir E. Dyhoum & Hussein A. Abdou & Hassan M. Aljohani, 2022. "Modeling for the Relationship between Monetary Policy and GDP in the USA Using Statistical Methods," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    14. Shizhen Bai & Yonggan Wang, 2022. "Green Investment Decision and Coordination in a Retailer-Dominated Supply Chain Considering Risk Aversion," Sustainability, MDPI, vol. 14(20), pages 1-36, October.
    15. Mehdaoui, Farah & Hazami, Majdi & Messaouda, Anis & Taghouti, Hichem & Guizani, AmenAllah, 2019. "Thermal testing and numerical simulation of PCM wall integrated inside a test cell on a small scale and subjected to the thermal stresses," Renewable Energy, Elsevier, vol. 135(C), pages 597-607.
    16. Raúl Katz & Juan Jung, 2022. "The Role of Broadband Infrastructure in Building Economic Resiliency in the United States during the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(16), pages 1-14, August.
    17. Emilia Herman & Kinga-Emese Zsido, 2023. "The Financial Sustainability of Retail Food SMEs Based on Financial Equilibrium and Financial Performance," Mathematics, MDPI, vol. 11(15), pages 1-26, August.
    18. Khanna, Sakshum & Paneliya, Sagar & Prajapati, Parth & Mukhopadhyay, Indrajit & Jouhara, Hussam, 2022. "Ultra-stable silica/exfoliated graphite encapsulated n-hexacosane phase change nanocomposite: A promising material for thermal energy storage applications," Energy, Elsevier, vol. 250(C).
    19. Yao, Shuting & Wang, Jiansheng & Liu, Xueling, 2021. "Role of wall-fluid interaction and rough morphology in heat and momentum exchange in nanochannel," Applied Energy, Elsevier, vol. 298(C).
    20. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5195-:d:619587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.