IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4995-d614577.html
   My bibliography  Save this article

Potential of Slip Synchronous Wind Turbine Systems: Grid Support and Mechanical Load Mitigation

Author

Listed:
  • Dillan Kyle Ockhuis

    (Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

  • Maarten Kamper

    (Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

Abstract

Wind power penetration into existing electrical power systems continues to experience year-on-year growth. Consequently, modern wind turbine systems (WTS) are required to comply with relevant grid codes and provide ancillary grid services to assist with overall grid stability. Adhering to these grid codes and services can cause additional mechanical loading on WTS, which can result in a reduction in service life of some of the drivetrain components, and instability if a sufficient means of damping is not present in the drivetrain. In this paper, a dynamic simulation model of a Type 1, direct grid-connected, fixed-speed (FS) slip-synchronous wind turbine system (SS-WTS) is developed to investigate its dynamic stability in response to the additional mechanical loads imparted onto it during transient events on the grid. The SS-WTS is not equipped with a power converter and, consequently, an understanding of its dynamic stability is critical to evaluate its ability to assist with grid services and maintain stability during transient grid conditions such as low-voltage ride-through (LVRT) events. An analytical transfer function model of a 1.5 MW geared direct grid-connected SS-WTS was derived and implemented in MATLAB/Simulink. It was found that the SS technology provides significant damping to the WTS drivetrain while maintaining dynamic stability during a severe LVRT event. Moreover, it was found that the degree of damping is directly proportional to the value of rated slip, and that high-speed drivetrains provide a greater degree of damping for a given value of rated slip. Furthermore, it is shown that the SS-WTS has the ability to assist with grid services such as primary frequency response, short-circuit strength, and reactive power compensation.

Suggested Citation

  • Dillan Kyle Ockhuis & Maarten Kamper, 2021. "Potential of Slip Synchronous Wind Turbine Systems: Grid Support and Mechanical Load Mitigation," Energies, MDPI, vol. 14(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4995-:d:614577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sijia Tu & Bingda Zhang & Xianglong Jin, 2019. "Research on DFIG-ES System to Enhance the Fast-Frequency Response Capability of Wind Farms," Energies, MDPI, vol. 12(18), pages 1-20, September.
    2. Arne Gloe & Clemens Jauch & Thomas Räther, 2021. "Grid Support with Wind Turbines: The Case of the 2019 Blackout in Flensburg," Energies, MDPI, vol. 14(6), pages 1-20, March.
    3. Alhmoud, Lina & Wang, Bingsen, 2018. "A review of the state-of-the-art in wind-energy reliability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1643-1651.
    4. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    5. Xing Luo & Jihong Wang & Jacek D. Wojcik & Jianguo Wang & Decai Li & Mihai Draganescu & Yaowang Li & Shihong Miao, 2018. "Review of Voltage and Frequency Grid Code Specifications for Electrical Energy Storage Applications," Energies, MDPI, vol. 11(5), pages 1-26, April.
    6. Meysam Saeedian & Bahram Pournazarian & S. Sajjad Seyedalipour & Bahman Eskandari & Edris Pouresmaeil, 2020. "Emulating Rotational Inertia of Synchronous Machines by a New Control Technique in Grid-Interactive Converters," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    7. Aboutaleb Haddadi & Evangelos Farantatos & Ilhan Kocar & Ulas Karaagac, 2021. "Impact of Inverter Based Resources on System Protection," Energies, MDPI, vol. 14(4), pages 1-21, February.
    8. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng-Chang Gu & Hung-Cheng Chen, 2021. "An Anti-Fluctuation Compensator Design and Its Control Strategy for Wind Farm System," Energies, MDPI, vol. 14(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    3. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    5. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Saif Ul Islam & Soobae Kim, 2023. "Design of an Optimal Adoptive Fault Ride through Scheme for Overcurrent Protection of Grid-Forming Inverter-Based Resources under Symmetrical Faults," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    8. Warren J. Farmer & Arnold J. Rix, 2021. "The Network Topology Metrics Contributing to Local-Area Frequency Stability in Power System Networks," Energies, MDPI, vol. 14(15), pages 1-28, July.
    9. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    10. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    11. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    12. Khan, Asif & Seyedmahmoudian, Mehdi & Raza, Ali & Stojcevski, Alex, 2021. "Analytical review on common and state-of-the-art FR strategies for VSC-MTDC integrated offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Arne Gloe & Clemens Jauch & Bogdan Craciun & Arvid Zanter & Jörg Winkelmann, 2021. "Influence of Continuous Provision of Synthetic Inertia on the Mechanical Loads of a Wind Turbine," Energies, MDPI, vol. 14(16), pages 1-23, August.
    14. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    15. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    16. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    17. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    18. Li, Yong & He, Li & Liu, Fang & Tan, Yi & Cao, Yijia & Luo, Longfu & Shahidehpour, Mohammod, 2018. "A dynamic coordinated control strategy of WTG-ES combined system for short-term frequency support," Renewable Energy, Elsevier, vol. 119(C), pages 1-11.
    19. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4995-:d:614577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.