IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6413-d651323.html
   My bibliography  Save this article

An Anti-Fluctuation Compensator Design and Its Control Strategy for Wind Farm System

Author

Listed:
  • Feng-Chang Gu

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41107, Taiwan)

  • Hung-Cheng Chen

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41107, Taiwan)

Abstract

Large-scale wind farms in commercial operations have demonstrated growing influence on the stability of an electricity network and the power quality thereof. Variations in the output power of large-scale wind farms cause voltage fluctuations in the corresponding electrical networks. To achieve low-voltage ride-through capability in a doubly fed induction generator (DFIG) during a fault event, this study proposes a real-time reactive power control strategy for effective DFIG application and a static synchronous compensator (STATCOM) for reactive power compensation. Mathematic models were developed for the DFIG and STATCOM, followed by the development of an indirect control scheme for the STATCOM based on decoupling dual-loop current control. Moreover, a real-world case study on a commercial wind farm comprising 23 DFIGs was conducted. The voltage regulation performance of the proposed reactive power control scheme against a fault event was also simulated. The simulation results revealed that enhanced fault ride-through capability and prompt recovery of the output voltage provided by a wind turbine generator could be achieved using the DFIG along with the STATCOM in the event of a three-phase short-circuit fault.

Suggested Citation

  • Feng-Chang Gu & Hung-Cheng Chen, 2021. "An Anti-Fluctuation Compensator Design and Its Control Strategy for Wind Farm System," Energies, MDPI, vol. 14(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6413-:d:651323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dillan Kyle Ockhuis & Maarten Kamper, 2021. "Potential of Slip Synchronous Wind Turbine Systems: Grid Support and Mechanical Load Mitigation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Fahed Martini & Leidy Tatiana Contreras Montoya & Adrian Ilinca, 2021. "Review of Wind Turbine Icing Modelling Approaches," Energies, MDPI, vol. 14(16), pages 1-26, August.
    3. Youjie Ma & Xiaotong Sun & Xuesong Zhou, 2020. "Research on D-STATCOM Double Closed-Loop Control Method Based on Improved First-Order Linear Active Disturbance Rejection Technology," Energies, MDPI, vol. 13(15), pages 1-19, August.
    4. Cheng Luo & Xikui Ma & Lihui Yang & Yongming Li & Xiaoping Yang & Junhui Ren & Yanmei Zhang, 2021. "A Modified Grid-Connected Inverter Topology for Power Oscillation Suppression under Unbalanced Grid Voltage Faults," Energies, MDPI, vol. 14(16), pages 1-17, August.
    5. Shijia Zhou & Fei Rong & Xiaojie Ning, 2021. "Optimization Control Strategy for Large Doubly-Fed Induction Generator Wind Farm Based on Grouped Wind Turbine," Energies, MDPI, vol. 14(16), pages 1-16, August.
    6. Shuyu Guo & Shihong Miao & Haipeng Zhao & Haoran Yin & Zixin Wang, 2020. "A Novel Fault Location Method of a 35-kV High-Reliability Distribution Network Using Wavelet Filter-S Transform," Energies, MDPI, vol. 13(19), pages 1-22, October.
    7. Youjie Ma & Xia Yang & Xuesong Zhou & Luyong Yang & Yongliang Zhou, 2020. "Dual Closed-Loop Linear Active Disturbance Rejection Control of Grid-Side Converter of Permanent Magnet Direct-Drive Wind Turbine," Energies, MDPI, vol. 13(5), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping-Kui Wang & Yu-Jen Liu & Jun-Tinn Lin & Zen-Wei Wang & Hsu-Chih Cheng & Bo-Xuan Huang & Gary W. Chang, 2022. "Harris Hawks Optimization-Based Algorithm for STATCOM Voltage Regulation of Offshore Wind Farm Grid," Energies, MDPI, vol. 15(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahed Martini & Hussein Ibrahim & Leidy Tatiana Contreras Montoya & Patrick Rizk & Adrian Ilinca, 2022. "Turbulence Modeling of Iced Wind Turbine Airfoils," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Andrzej Sikorski & Piotr Falkowski & Marek Korzeniewski, 2021. "Comparison of Two Power Converter Topologies in Wind Turbine System," Energies, MDPI, vol. 14(20), pages 1-16, October.
    3. Hemant Ahuja & Arika Singh & Sachin Sharma & Gulshan Sharma & Pitshou N. Bokoro, 2022. "Coordinated Control of Wind Energy Conversion System during Unsymmetrical Fault at Grid," Energies, MDPI, vol. 15(13), pages 1-15, July.
    4. Kiran Siddappaji & Mark Turner, 2022. "Improved Prediction of Aerodynamic Loss Propagation as Entropy Rise in Wind Turbines Using Multifidelity Analysis," Energies, MDPI, vol. 15(11), pages 1-44, May.
    5. Xuesong Zhou & Yongliang Zhou & Youjie Ma & Luyong Yang & Xia Yang & Bo Zhang, 2020. "DC Bus Voltage Control of Grid-Side Converter in Permanent Magnet Synchronous Generator Based on Improved Second-Order Linear Active Disturbance Rejection Control," Energies, MDPI, vol. 13(18), pages 1-19, September.
    6. Youjie Ma & Xiaotong Sun & Xuesong Zhou, 2020. "Research on D-STATCOM Double Closed-Loop Control Method Based on Improved First-Order Linear Active Disturbance Rejection Technology," Energies, MDPI, vol. 13(15), pages 1-19, August.
    7. Alaa Khasawneh & Mohamed Qawaqzeh & Vladislav Kuchanskyy & Olena Rubanenko & Oleksandr Miroshnyk & Taras Shchur & Marcin Drechny, 2021. "Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line," Energies, MDPI, vol. 14(20), pages 1-15, October.
    8. Fahed Martini & Adrian Ilinca & Patrick Rizk & Hussein Ibrahim & Mohamad Issa, 2022. "A Survey of the Quasi-3D Modeling of Wind Turbine Icing," Energies, MDPI, vol. 15(23), pages 1-32, November.
    9. Adolfo Dannier & Emanuele Fedele & Ivan Spina & Gianluca Brando, 2022. "Doubly-Fed Induction Generator (DFIG) in Connected or Weak Grids for Turbine-Based Wind Energy Conversion System," Energies, MDPI, vol. 15(17), pages 1-5, September.
    10. Miao Zhang & Keyu Zhuang & Tong Zhao & Xianli Chen & Jingze Xue & Zheng Qiao & Shuai Cui & Yunlong Gao, 2022. "Bus Voltage Control of Photovoltaic Grid Connected Inverter Based on Adaptive Linear Active Disturbance Rejection," Energies, MDPI, vol. 15(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6413-:d:651323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.