IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3776-d580799.html
   My bibliography  Save this article

Yearly Electrical Energy Assessment of a Photovoltaic Platform/Geothermal Heat Pump Prosumer

Author

Listed:
  • Macedon Moldovan

    (Renewable Energy Systems and Recycling Research Centre, Transilvania University of Brasov, 500036 Brașov, Romania)

  • Bogdan-Gabriel Burduhos

    (Renewable Energy Systems and Recycling Research Centre, Transilvania University of Brasov, 500036 Brașov, Romania)

  • Ion Visa

    (Renewable Energy Systems and Recycling Research Centre, Transilvania University of Brasov, 500036 Brașov, Romania)

Abstract

Romania introduced in 2018 an amendment to the national law 220/2008 by including the Prosumer concept that allows investors in grid-connected photovoltaic systems with a capacity up to 27 kWp to receive a feed in tariff for the electricity delivered to the grid representing approximatively one third of the price paid when the electricity is consumed from the grid. Thus, the challenge is to use as much as possible the photovoltaic power when it is produced. A methodology is developed to evaluate how much of the electrical energy output of a grid-connected photovoltaic platform is used by a geothermal heat pump for space heating in a building. A numerical simulation is performed in Trnsys17 based on locally measured meteorological parameters over a period of one entire year. A case study is presented for which the characteristics of the building, of the heat pump system and of the photovoltaic system are described and integrated into the transient simulation environment. The numerical results are comparatively presented and discussed along with experimental data for sunny days in cold season. For the analysed case study, the self-consumption is 16%, significantly lower than the yearly coverage degree of 70%. Further research can be done to increase the self-consumption.

Suggested Citation

  • Macedon Moldovan & Bogdan-Gabriel Burduhos & Ion Visa, 2021. "Yearly Electrical Energy Assessment of a Photovoltaic Platform/Geothermal Heat Pump Prosumer," Energies, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3776-:d:580799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3776/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2017. "Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity," Applied Energy, Elsevier, vol. 188(C), pages 604-619.
    2. Luka Perković & Domagoj Leko & Amalia Lekić Brettschneider & Hrvoje Mikulčić & Petar S. Varbanov, 2021. "Integration of Photovoltaic Electricity with Shallow Geothermal Systems for Residential Microgrids: Proof of Concept and Techno-Economic Analysis with RES2GEO Model," Energies, MDPI, vol. 14(7), pages 1-21, March.
    3. Hirvonen, Janne & Kayo, Genku & Hasan, Ala & Sirén, Kai, 2016. "Zero energy level and economic potential of small-scale building-integrated PV with different heating systems in Nordic conditions," Applied Energy, Elsevier, vol. 167(C), pages 255-269.
    4. Kuznetsova, Elizaveta & Anjos, Miguel F., 2021. "Prosumers and energy pricing policies: When, where, and under which conditions will prosumers emerge? A case study for Ontario (Canada)," Energy Policy, Elsevier, vol. 149(C).
    5. Thygesen, Richard & Karlsson, Björn, 2016. "Simulation of a proposed novel weather forecast control for ground source heat pumps as a mean to evaluate the feasibility of forecast controls’ influence on the photovoltaic electricity self-consumpt," Applied Energy, Elsevier, vol. 164(C), pages 579-589.
    6. Reda, Francesco & Paiho, Satu & Pasonen, Riku & Helm, Martin & Menhart, Florian & Schex, Richard & Laitinen, Ari, 2020. "Comparison of solar assisted heat pump solutions for office building applications in Northern climate," Renewable Energy, Elsevier, vol. 147(P1), pages 1392-1417.
    7. Fraga, Carolina & Hollmuller, Pierre & Schneider, Stefan & Lachal, Bernard, 2018. "Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands," Applied Energy, Elsevier, vol. 225(C), pages 1033-1053.
    8. Rinaldi, Arthur & Soini, Martin Christoph & Streicher, Kai & Patel, Martin K. & Parra, David, 2021. "Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation," Applied Energy, Elsevier, vol. 282(PB).
    9. Franco, Alessandro & Fantozzi, Fabio, 2016. "Experimental analysis of a self consumption strategy for residential building: The integration of PV system and geothermal heat pump," Renewable Energy, Elsevier, vol. 86(C), pages 1075-1085.
    10. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.
    11. Nižetić, S. & Duić, N. & Papadopulos, A.M. & Tina, G.M. & Grubišić-Čabo, F., 2015. "Energy efficiency evaluation of a hybrid energy system for building applications in a Mediterranean climate and its feasibility aspect," Energy, Elsevier, vol. 90(P1), pages 1171-1179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Macedon Moldovan & Bogdan Gabriel Burduhos & Ion Visa, 2023. "Efficiency Assessment of Five Types of Photovoltaic Modules Installed on a Fixed and on a Dual-Axis Solar-Tracked Platform," Energies, MDPI, vol. 16(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    2. Fraga, Carolina & Hollmuller, Pierre & Schneider, Stefan & Lachal, Bernard, 2018. "Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands," Applied Energy, Elsevier, vol. 225(C), pages 1033-1053.
    3. Knuutinen, Jere & Böök, Herman & Ruuskanen, Vesa & Kosonen, Antti & Immonen, Paula & Ahola, Jero, 2021. "Ground source heat pump control methods for solar photovoltaic-assisted domestic hot water heating," Renewable Energy, Elsevier, vol. 177(C), pages 732-742.
    4. Biglarian, Hassan & Abdollahi, Sina, 2022. "Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump," Energy, Elsevier, vol. 243(C).
    5. Elisa Marrasso & Carlo Roselli & Francesco Tariello, 2020. "Comparison of Two Solar PV-Driven Air Conditioning Systems with Different Tracking Modes," Energies, MDPI, vol. 13(14), pages 1-24, July.
    6. Roselli, C. & Diglio, G. & Sasso, M. & Tariello, F., 2019. "A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid," Renewable Energy, Elsevier, vol. 143(C), pages 488-500.
    7. Kavian, Soheil & Aghanajafi, Cyrus & Jafari Mosleh, Hassan & Nazari, Arash & Nazari, Ashkan, 2020. "Exergy, economic and environmental evaluation of an optimized hybrid photovoltaic-geothermal heat pump system," Applied Energy, Elsevier, vol. 276(C).
    8. Paolo Conti & Carlo Bartoli & Alessandro Franco & Daniele Testi, 2020. "Experimental Analysis of an Air Heat Pump for Heating Service Using a “Hardware-In-The-Loop” System," Energies, MDPI, vol. 13(17), pages 1-18, September.
    9. Alessandro Franco & Carlo Bartoli & Paolo Conti & Daniele Testi, 2021. "Optimal Operation of Low-Capacity Heat Pump Systems for Residential Buildings through Thermal Energy Storage," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    10. Cristian Sánchez & Lionel Bloch & Jordan Holweger & Christophe Ballif & Nicolas Wyrsch, 2019. "Optimised Heat Pump Management for Increasing Photovoltaic Penetration into the Electricity Grid," Energies, MDPI, vol. 12(8), pages 1-22, April.
    11. Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Firdaous El Ghazi & Moulay Brahim Sedra & Mahmoud Akdi, 2021. "Electricity Development and Opportunities to Reduce Carbon Dioxide Emissions in Morocco," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 149-156.
    13. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    14. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    15. Angeliki Kitsopoulou & Antonis Zacharis & Nikolaos Ziozas & Evangelos Bellos & Petros Iliadis & Ioannis Lampropoulos & Eleni Chatzigeorgiou & Komninos Angelakoglou & Nikolaos Nikolopoulos, 2023. "Dynamic Energy Analysis of Different Heat Pump Heating Systems Exploiting Renewable Energy Sources," Sustainability, MDPI, vol. 15(14), pages 1-36, July.
    16. Luthander, Rasmus & Nilsson, Annica M. & Widén, Joakim & Åberg, Magnus, 2019. "Graphical analysis of photovoltaic generation and load matching in buildings: A novel way of studying self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 250(C), pages 748-759.
    17. Omar Montero & Pauline Brischoux & Simon Callegari & Carolina Fraga & Matthias Rüetschi & Edouard Vionnet & Nicole Calame & Fabrice Rognon & Martin Patel & Pierre Hollmuller, 2022. "Large Air-to-Water Heat Pumps for Fuel-Boiler Substitution in Non-Retrofitted Multi-Family Buildings—Energy Performance, CO 2 Savings, and Lessons Learned in Actual Conditions of Use," Energies, MDPI, vol. 15(14), pages 1-29, July.
    18. Sakalis, George N. & Frangopoulos, Christos A., 2018. "Intertemporal optimization of synthesis, design and operation of integrated energy systems of ships: General method and application on a system with Diesel main engines," Applied Energy, Elsevier, vol. 226(C), pages 991-1008.
    19. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    20. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3776-:d:580799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.