IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1229-d1044686.html
   My bibliography  Save this article

Efficiency Assessment of Five Types of Photovoltaic Modules Installed on a Fixed and on a Dual-Axis Solar-Tracked Platform

Author

Listed:
  • Macedon Moldovan

    (Renewable Energy Systems and Recycling Research Centre, Transilvania University of Brasov, 500036 Brasov, Romania)

  • Bogdan Gabriel Burduhos

    (Renewable Energy Systems and Recycling Research Centre, Transilvania University of Brasov, 500036 Brasov, Romania)

  • Ion Visa

    (Renewable Energy Systems and Recycling Research Centre, Transilvania University of Brasov, 500036 Brasov, Romania)

Abstract

A solution to increase the electrical output of the photovoltaic systems relies on solar tracking mechanisms that increase the amount of received solar energy. The experimental results obtained during a monitoring period of one year are comparatively presented in the paper for five types of photovoltaic modules installed on a fixed platform (as reference) and on a dual-axis solar tracking platform in the Renewable Energy Systems and Recycling R&D Centre of the Transilvania University of Brasov, Romania. The influence of the solar-tracking mechanism and the meteorological conditions specific to the four seasons during the monitoring period on the output of the analysed photovoltaic technologies are discussed in the paper. The solar tracking increases by 28% the amount of the yearly received solar energy and by 29.6% the electrical energy output of the entire PV platform. The solar conversion efficiency of the tracked PV platform is slightly increased (14.34%) when compared with the fixed one (14.17%). When assessing the influence of solar tracking on each type of PV, the results show that the CIGS PV module has the highest relative energy gain (34%) followed by CIS (30.8%), m-Si (30.6%), p-Si (27.3%) and CdTe (23.4%) PV modules.

Suggested Citation

  • Macedon Moldovan & Bogdan Gabriel Burduhos & Ion Visa, 2023. "Efficiency Assessment of Five Types of Photovoltaic Modules Installed on a Fixed and on a Dual-Axis Solar-Tracked Platform," Energies, MDPI, vol. 16(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1229-:d:1044686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yujun & Yao, Ling & Jiang, Hou & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2022. "Spatial estimation of the optimum PV tilt angles in China by incorporating ground with satellite data," Renewable Energy, Elsevier, vol. 189(C), pages 1249-1258.
    2. Balaska, Amira & Tahri, Ali & Tahri, Fatima & Stambouli, Amine Boudghene, 2017. "Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria," Renewable Energy, Elsevier, vol. 107(C), pages 53-60.
    3. Ameur, Arechkik & Berrada, Asmae & Bouaichi, Abdellatif & Loudiyi, Khalid, 2022. "Long-term performance and degradation analysis of different PV modules under temperate climate," Renewable Energy, Elsevier, vol. 188(C), pages 37-51.
    4. Quansah, David A. & Adaramola, Muyiwa S., 2019. "Assessment of early degradation and performance loss in five co-located solar photovoltaic module technologies installed in Ghana using performance ratio time-series regression," Renewable Energy, Elsevier, vol. 131(C), pages 900-910.
    5. Macedon Moldovan & Bogdan-Gabriel Burduhos & Ion Visa, 2021. "Yearly Electrical Energy Assessment of a Photovoltaic Platform/Geothermal Heat Pump Prosumer," Energies, MDPI, vol. 14(13), pages 1-18, June.
    6. Ustun, Taha Selim & Nakamura, Yasuhiro & Hashimoto, Jun & Otani, Kenji, 2019. "Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan," Renewable Energy, Elsevier, vol. 136(C), pages 159-178.
    7. Visa, Ion & Burduhos, Bogdan & Neagoe, Mircea & Moldovan, Macedon & Duta, Anca, 2016. "Comparative analysis of the infield response of five types of photovoltaic modules," Renewable Energy, Elsevier, vol. 95(C), pages 178-190.
    8. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cătălin Alexandru, 2024. "Simulation and Optimization of a Dual-Axis Solar Tracking Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    2. Singh, Rashmi & Sharma, Madhu & Yadav, Kamlesh, 2022. "Degradation and reliability analysis of photovoltaic modules after operating for 12 years: A case study with comparisons," Renewable Energy, Elsevier, vol. 196(C), pages 1170-1186.
    3. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Maria Dousi & S. Hionidis & S. Kaliakos & Elena Mastrapostoli & Michael Nomikos & Mattheos Santamouris & Afroditi Synnefa & Giuseppe Peter V, 2017. "Design and performance analysis of a zero-energy settlement in Greece," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 141-161.
    4. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    5. Byoungsam Jin & Youngchul Bae, 2023. "Prospective Research Trend Analysis on Zero-Energy Building (ZEB): An Artificial Intelligence Approach," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    6. Jia, Shuning & Sheng, Kai & Huang, Dehai & Hu, Kai & Xu, Yizhe & Yan, Chengchu, 2023. "Design optimization of energy systems for zero energy buildings based on grid-friendly interaction with smart grid," Energy, Elsevier, vol. 284(C).
    7. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    8. Balaska, Amira & Tahri, Ali & Tahri, Fatima & Stambouli, Amine Boudghene, 2017. "Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria," Renewable Energy, Elsevier, vol. 107(C), pages 53-60.
    9. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    10. Pawluk, Robert E. & Chen, Yuxiang & She, Yuntong, 2019. "Photovoltaic electricity generation loss due to snow – A literature review on influence factors, estimation, and mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 171-182.
    11. AL-Rasheedi, Majed & Gueymard, Christian A. & Al-Khayat, Mohammad & Ismail, Alaa & Lee, Jared A. & Al-Duaj, Hamad, 2020. "Performance evaluation of a utility-scale dual-technology photovoltaic power plant at the Shagaya Renewable Energy Park in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    13. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    14. Ghasan Fahim Huseien & Kwok Wei Shah, 2021. "Potential Applications of 5G Network Technology for Climate Change Control: A Scoping Review of Singapore," Sustainability, MDPI, vol. 13(17), pages 1-26, August.
    15. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    16. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    17. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    18. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    19. Javier M. Rey-Hernández & Eloy Velasco-Gómez & Julio F. San José-Alonso & Ana Tejero-González & Sergio L. González-González & Francisco J. Rey-Martínez, 2018. "Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study," Energies, MDPI, vol. 11(11), pages 1-17, November.
    20. Coma Bassas, Ester & Patterson, Joanne & Jones, Phillip, 2020. "A review of the evolution of green residential architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1229-:d:1044686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.